

Program Guide for
Windows

Appendix J: SQL Searches

Himal 2.0

Richard Salisbury

The Himalayan Database

October 2017

2

Contents

Appendix J: SQL Searches ... 3	

Special SQL Operators .. 10	
Aggregate Operators and Grouping Results .. 11	
SQL Queries with Sub-Queries ... 16	
Special SQL Operators with Sub-Queries .. 23	
Combining Multiple Queries with the UNION Clause 27	
Using the Results of One Query for a Subsequent Query 29	
Special Visual FoxPro Functions and Operators ... 31	
Special Himal Functions ... 31	
Notes on Visual FoxPro and Excel Date Formats .. 34	
Additional SQL Features Available for Visual FoxPro 6 36	
Additional SQL Features Available for Visual FoxPro 9 40	
Additional Examples for Visual Foxpro 6 and 9 .. 47	

3

Appendix J: SQL Searches

The SQL Search commands in the Search menu allows you to build
sophisticated searches (or queries) that can extract data from one or more tables.

SQL (Structured Query Language and usually pronounced “sequel”) is a
standardized computer language that was developed in the 1970s by the IBM
Corporation for accessing information stored in database tables. Relational
databases produced by IBM, Oracle, Microsoft, and other software vendors
support various versions or dialects of SQL. Microsoft Visual FoxPro is one of
those databases.

The SQL supported by the earlier versions Visual FoxPro conforms more closely
to the original version of the language often called SQL86, not the more recent
dialects such as SQL92, SQL99, and SQLJ.

This section gives only a minimal introduction to the SQL language and the
common features that are supported both by Visual FoxPro 6, used by the
original version 1.x releases of The Himalayan Database. Visual FoxPro 9
expanded support to include many features of the SQL92 dialect of SQL and is
now used in the current version 2.0 and later releases of The Himalayan
Database.

There are many computer books available in bookstores that give a more
comprehensive description of SQL and the more elaborate queries that can be
formulated. One such book is Mastering SQL by Martin Gruber (Sybex, 2000,
976 pages) that is based on his classic volume Understanding SQL (Sybex, 1990,
434 pages). Either edition provides a good foundation for using SQL. Of course,
you can take a more lowbrow approach and use SQL for Dummies by Allen G.
Taylor (IDG Books, 2003, 432 pages).

The Simple SQL Search and Full SQL Search commands are located in the
Search menu:

4

The remainder of this appendix will describe the use of the Full SQL Search
command. The Simple SQL Search command offers an assisted method of
constructing SQL searches once the basic SQL language is understood.

Clicking on the Full SQL Search commands brings up the Set SQL Search
Command dialog:

The simplest form of the SELECT statement that can be used with the Himal
program is

 SELECT field-list FROM table-list WHERE condition
 ORDER BY order-list

The FROM “table-list” clause gives the tables that are to be queried for
extracting the data. For the Himalayan Database, the tables normally will be
one or more of Peaks, Exped, and Members; for example:

 peaks
 peaks, exped
 exped, members

The “field-list” describes the data that is to be extracted from the database tables
by the query. This is normally a list of table fields given in the format
“tablename.fieldname” such as

5

 peaks.peakid, peaks.pkname, peaks.heightm
 exped.expid, exped.year, exped.season, exped.route1
 members.expid, members.lname, members.fname, members.citizen
 peaks.pkname, exped.year, exped.season, exped.route1

The table names and field names used by the Himalayan Database are described
in Appendix B of the Himalayan Database Program Guide.

An alias for a table name may be used to shorten the field-list. For the
remainder of this appendix, we will use the aliases “p” for Peaks, “x” for Exped,
and “m” for Members. So our above examples would be

 peaks p
 peaks p, exped x
 exped x, members m

and

 p.peakid, p.pkname, p.heightm
 x.expid, x.year, x.season, x.route1
 m.expid, m.lname, m.fname, m.citizen
 p.pkname, x.year, x.season, x.route1

The WHERE clause describes how the data is be searched during the query. The
syntax for the “condition” is generally the same as that used by the Search,
Browse and Export commands in the Himalayan Database and is described in
Appendix C of the Himalayan Database Program Guide. The WHERE clause is
optional, but is almost always used.

The ORDER BY clause gives the order in which the results are to be sorted. The
“order-list” is usually one or two of the field names (the second being a secondary
sort order). The ORDER BY clause is optional.

For example, to search for all of the 7000m peaks in the Himalayan Database,
you can construct a SQL statement of the form

 SELECT p.peakid, p.pkname, p.heightm
 FROM peaks p
 WHERE Between(p.heightm,7000,7999)
 ORDER BY p.pkname

The second, third and fourth lines are indented to force a blank between the end
of the previous line and the next line. The entire command is passed to Visual
FoxPro as one long command line and the FROM, WHERE and ORDER BY
clauses each must be preceded by a blank. Since you cannot tell by looking if a
line ends with a blank, it is a good habit to indent the next line.

The result of this query will contain one record for each peak in the 7000m range
giving the peak ID, the peak name, and the peak height.

6

To execute this query, enter the SQL command text into the dialog box:

In the above example and all of the following examples, the SQL keywords are
given in uppercase for clarity; however, they may be used either in upper, lower,
or mixed case.

If you want all of the fields from all of the tables in your search, you can use “*”
for the field-list; for the above example, this would be given as:

 SELECT * FROM peaks p WHERE Between(p.heightm,7000,7999)
 ORDER BY p.pkname

In another example, to search for all American and Canadian women that
attempted Everest:

 SELECT m.peakid, m.fname, m.lname, m.citizen, m.myear, m.mseason
 FROM members m
 WHERE m.peakid="EVER" And m.sex="F" And
 Inlist(Upper(m.citizen),"USA","CANADA")
 ORDER BY m.myear, m.mseason

Note the use of Upper function that matches all upper and lowercase spellings of
USA and Canada in the database.

7

The result of this query may contain duplicate records where the peak ID, the
first and last names, and the citizenship are the same when one woman has
made multiple attempts on Everest. To eliminate the duplicates, the DISTINCT
keyword is used to force the result to have only one copy of each record:

 SELECT DISTINCT m.peakid, m.fname, m.lname, m.citizen,
 m.myear, m.mseason
 FROM members m WHERE m.peakid="EVER" And m.sex="F" And
 Inlist(Upper(m.citizen),"USA","CANADA")
 ORDER BY m.myear, m.mseason

To search for all those (both men and women) age 60+ summiting Everest:

 SELECT m.peakid, m.lname, m.fname, m.citizen, m.calcage,
 m.myear, m.mseason FROM members m
 WHERE m.peakid="EVER" And m.msuccess And m.calcage>=60
 ORDER BY m.calcage

Note the insertion of “And m.msuccess” to indicate that only successful attempts
are wanted and the use of Calcage field instead of the Age field from the
Members table since only the calculated age is available in the published version
of the database.

Using the DISTINCT keyword in the above example:

 SELECT DISTINCT m.peakid, m.lname, m.fname, m.citizen, m.calcage,
 m.myear, m.mseason FROM members m
 WHERE m.peakid="EVER" And m.msuccess And m.calcage>=60
 ORDER BY m.calcage

would eliminate very few (if any) duplicate records since most duplicate
members found in the query would have attempted Everest at a different age
each time, thus the resulting records would be different in the Calcage field.

The above examples have only queried a single table to produce the result. The
real power of the SQL Select command is to produce results by searching
multiple tables using join-conditions.

We now will expand our example to search for all those age 60+ that have
summited any Nepalese 8000m peak, ordered by peak ID, then by age:

 SELECT p.peakid, p.pkname, m.lname, m.fname, m.citizen, m.calcage,
 m.myear, m.mseason FROM members m, peaks p
 WHERE m.peakid=p.peakid And m.msuccess And
 m.calcage>=60 And p.heightm>=8000
 ORDER BY p.peakid, m.calcage

Note that this query includes some non-traditional 8000m peaks such as
Annapurna East & Central, Kangchenjunga Central & South and Yalung Kang.

8

The query for all American and Canadian women that attempted Everest from
only the Nepal side requires the searching of both the Members and Exped
tables by joining both tables:

 SELECT m.peakid, x.host, m.fname, m.lname, m.citizen, m.myear,
 m.mseason
 FROM members m, exped x
 WHERE m.expid=x.expid And m.sex="F" And
 Inlist(Upper(m.citizen),"USA","CANADA") And x.host=1 And
 m.peakid="EVER"
 ORDER BY m.myear, m.mseason

In the above example, to substitute the peak name into the result of the query
instead of the peak ID, the Peaks, Members and Exped tables would need to be
joined to extract the peak name from the Peaks table:

 SELECT p.pkname, x.host, m.fname, m.lname, m.citizen, m.myear,
 m.mseason
 FROM peaks p, members m, exped x
 WHERE m.peakid=p.peakid And m.expid=x.expid And
 m.sex="F" And Inlist(Upper(m.citizen),"USA","CANADA") And
 x.host=1 And m.peakid="EVER"
 ORDER BY m.myear, m.mseason

These examples illustrate the use of “join-conditions” that are required to show
how the tables are linked. The normal join-conditions between the Himalayan
Database tables are:

 Exped with Members exped.expid = members.expid
 Exped with Peaks exped.peakid = peaks.peakid
 Exped with Refer exped.expid = refer.expid
 Members with Peaks members.peakid = peaks.peakid

If the join-conditions are omitted, then meaningless and potentially disastrous
results could occur.

In the example of the age 60+ climbers summiting 8000m peaks, if there were 15
8000m peaks in the Peaks table and 100 climbers had summited some of these
15 peaks, then the result should be 100 records. But by omitting the join-
condition, 1500 (10 x 50) records would be the result due to runaway cross-
linking between the tables. This is sometimes described as a “Cartesian join.”

If an unjoined query were done between the Exped table (9000+ records) and the
Member table (65,000+ records) without any other conditions on the query, the
result would exceed 585,000,000 (9000 x 65,000) records and would likely freeze
the computer due to insufficient memory to complete the query. Imagine the
potential results of an unjoined query between the three Himalayan Database
tables (450 x 9000 x 65,000)!

9

The results of the query are normally displayed in a Browse grid window on your
computer screen. Instead of displaying the result, you can redirect the output to
a permanent Visual FoxPro dbf-type table by inserting the INTO clause into
your SELECT statement:

 SELECT field-list FROM table-list INTO TABLE output-table-name
 WHERE condition ORDER BY order-list

The output table name must begin with an alphabetic character. For example,

 SELECT p.peakid, p.pkname, p.heightm FROM peaks p
 INTO TABLE peaks7000
 WHERE Between(p.heightm,7000,7999)
 ORDER BY p.pkname

Output tables from SQL queries may be used in subsequent SQL queries as is
discussed later in this section.

After you have executed your query and have finished viewing the output on
your screen, you can also save the output to an Excel file, which in most cases is
more useful than saving the output to a Visual FoxPro table.

10

You can save and retrieve your SQL commands in the same manner as you save
Search and Export command conditions by using the Save Command and
Load Command buttons on the Set SQL Search Command dialog. See the end
of Appendix C for further details.

Special SQL Operators

The above examples used the Visual FoxPro Between and Inlist functions in the
condition expressions for the WHERE clause in the SELECT command.

SQL also has similar functions in its own language that may be used instead of
the Visual FoxPro functions:

 SQL Function Visual FoxPro Function

field-name BETWEEN value1 AND value2 Between(field-name,value1,value2)
field-name IN (value1,value2,…) Inlist(field-name,value1,value2,…)

The Visual FoxPro Inlist function also can be reversed to the form

 Inlist(value,field-name1,field-name2,…)

whereas the SQL IN function cannot be reversed.

For example, using the SQL functions

 SELECT p.peakid, p.pkname, p.heightm FROM peaks p
 WHERE Between(p.heightm,7000,7999)
 ORDER BY p.pkname

could be rewritten as

 SELECT p.peakid, p.pkname, p.heightm FROM peaks p
 WHERE p.heightm BETWEEN 7000 AND 7999
 ORDER BY p.pkname

and

 SELECT m.peakid, m.fname, m.lname, m.citizen FROM members m
 WHERE m.peakid="EVER" And m.sex="F" And
 Inlist(Upper(m.citizen),"USA","CANADA")

could be rewritten as

 SELECT m.peakid, m.fname, m.lname, m.citizen FROM members m
 WHERE m.peakid="EVER" And m.sex="F" And
 Upper(m.citizen) IN ("USA","CANADA")

11

Other publications that directly describe the SQL language will use the SQL
functions in their examples.

Aggregate Operators and Grouping Results

The SQL language provides several special functions for aggregating data from
several records in a table:

 COUNT(*) counts the number of records in the query result

 SUM(field-name) produces the arithmetic sum of all the values in

“field-name”

 AVG(field-name) produces the average (mean) of all the values in

“field-name”

 MIN(field-name) produces minimum value of all the values in

“field-name”

 MAX(field-name) produces maximum value of all the values in

“field-name”

These SQL function may be used in the field-list and in the GROUP BY and
HAVING clauses of the SELECT command (but not in the condition phrase of
the WHERE clause). Of these, the COUNT and SUM functions are probably the
most useful with the Himalayan Database.

The GROUP BY clause enables you to group values in a query based on the
values of one or more fields and is specified in the form

 GROUP BY group-list

where “group-list” is normally a list of table field names.

To illustrate these concepts, we will perform a sequence of queries that search
for the number of deaths on Everest between 1995 and 1996.

The first query is used to collect the raw data

 SELECT x.year, x.season, x.mdeaths, x.hdeaths FROM exped x
 WHERE x.peakid="EVER" And x.mdeaths+x.hdeaths>0 And
 Between(x.year,"1995","1996")

and generates a list of death counts where each record represents one expedition
that had either a member or hired death. From the table below, we see that
there was one expedition in Spring 1995 with one hired death, three expeditions
in Autumn 1995 with either a hired death or a member death, and multiple
expeditions in Spring 1996 with numerous deaths, etc.

12

Year Season Mdeaths Hdeaths
1995 1 0 1
1995 3 0 1
1995 3 0 1
1995 3 1 0
1996 1 4 0
1996 1 1 1
1996 1 1 0
1996 1 1 0
1996 1 1 0
1996 1 3 0
1996 3 1 0
1996 3 0 1
1996 3 0 1

 The second query is used to total the number of deaths

 SELECT SUM(x.mdeaths), SUM(x.hdeaths) FROM exped x
 WHERE x.peakid="EVER" And x.mdeaths+x.hdeaths>0 And
 Between(x.year,"1995","1996")

and produces the total death counts for 1995 and 1996

Sum_mdeaths Sum_hdeaths
13 6

This may or may not be an interesting result, but it certainly is not the most
useful result that can be obtained.

The aggregate functions produce only one row in the output table for each of the
aggregated results. Hence if other field-names are in output field-list, the result
may or may not be meaningful and in some cases not even correct. The third
query adds “x.year, x.season” to the output list

 SELECT x.year, x.season, SUM(x.mdeaths), SUM(x.hdeaths)
 FROM exped x WHERE x.peakid="EVER" And
 x.mdeaths+x.hdeaths>0 And Between(x.year,"1995","1996")

with the result

Year Season Sum_mdeaths Sum_hdeaths
1996 3 13 6

Since the year and season were not aggregated, only the last value found
appears in the result that is not particularly useful and also very misleading.
Note: In Visual Foxpro 9, the above statement would be invalid.

To avoid this problem and still produce a meaningful result, we can use the
GROUP BY clause that is specified as

 GROUP BY group-list

13

where “group-list” is normally a list of table field names. This enables you to
group the results of a query based on the values of one or more fields:

In our fourth query, we will group the totals by year and season:

 SELECT x.year, x.season, Sum(x.mdeaths), Sum(x.hdeaths)
 FROM exped x WHERE x.peakid="EVER" And
 x.mdeaths+x.hdeaths>0 And Between(x.year,"1995","1996")
 GROUP BY x.year, x.season

This produces a much more meaningful and desirable result:

Year Season Sum_mdeaths Sum_hdeaths
1995 1 0 1
1995 3 1 2
1996 1 11 1
1996 3 1 2

You will note that the column titles are normally the field name or a variation
thereof. You can explicitly specify your own column titles by using the

 AS column-name

clause in the SELECT statement. The column-name cannot contain blanks. Thus
our previous query can be written as

 SELECT x.year, x.season, Sum(x.mdeaths) AS member_deaths,
 Sum(x.hdeaths) AS hired_deaths
 FROM exped x WHERE x.peakid="EVER" And
 x.mdeaths+x.hdeaths>0 And Between(x.year,"1995","1996")
 GROUP BY x.year, x.season

which produces

Year Season Member_deaths Hired_deaths
1995 1 0 1
1995 3 1 2
1996 1 11 1
1996 3 1 2

Aggregate functions can be used with multiple fields. Thus we can add another
column for total deaths by specifying

 SELECT x.year, x.season, Sum(x.mdeaths) AS member_deaths,
 Sum(x.hdeaths) AS hired_deaths,
 Sum(x.mdeaths+x.hdeaths) AS total_deaths
 FROM exped x WHERE x.peakid="EVER" And
 x.mdeaths+x.hdeaths>0 And Between(x.year,"1995","1996")
 GROUP BY x.year, x.season

14

which produces

Year Season Member_deaths Hired_deaths Total_deaths
1995 1 0 1 1
1995 3 1 2 3
1996 1 11 1 12
1996 3 1 2 3

When using the GROUP BY clause, all field values within each group must have
the same value except for those being summed; otherwise incorrect results may
occur. For example in the above query, if you add “x.host” to the SELECT field
list, the results will be incorrect for each group with more than one value in the
host field, unless “x.host” is also added to the GROUP BY list.

The HAVING clause which is specified by

 HAVING condition

may be used further refine the output of queries that use the GROUP BY clause.
For example, if in the above example, we only wanted the results for seasons
that had multiple deaths, we could specify

 SELECT x.year, x.season, Sum(x.mdeaths) AS member_deaths,
 Sum(x.hdeaths) AS hired_deaths,
 Sum(x.mdeaths+x.hdeaths) AS total_deaths
 FROM exped x WHERE x.peakid="EVER" And
 x.mdeaths+x.hdeaths>0 And Between(x.year,"1995","1996")
 GROUP BY x.year, x.season
 HAVING Sum(x.mdeaths+x.hdeaths) > 1

which produces

Year Season Member_deaths Hired_deaths Total_deaths
1995 3 1 2 3
1996 1 11 1 12
1996 3 1 2 3

If we were to use the SELECT statement

 SELECT x.year, x.season, Sum(x.mdeaths) AS member_deaths,
 Sum(x.hdeaths) AS hired_deaths,
 Sum(x.mdeaths+x.hdeaths) AS total_deaths
 FROM exped x WHERE x.peakid="EVER" And
 x.mdeaths+x.hdeaths>0 And Between(x.year,"1995","1996")
 And x.mdeaths+x.hdeaths > 1
 GROUP BY x.year, x.season

the query potentially could give a different result since the “x.mdeaths+

15

x.hdeaths > 1” phrase would apply to individual expeditions in the database, not
to the expeditions grouped by year and season.

The HAVING clause can be used without the GROUP BY clause to refine the
output from a query, in which case it really acts like a WHERE clause.

The COUNT function can be used to give a quick total of the number of records
in a query that match a specified condition. For example, to count the number of
successful expeditions for all peaks in the 1990s, use the SQL statement

 SELECT COUNT(*) FROM exped x
 WHERE (x.success1 Or x.success2 Or x.success3 Or x.success4) And
 Between(x.year,"1990","1999")

which gives the result

Cnt
915

Note the use of the parentheses around the “success” portion of the WHERE
clause to force the order of expression evaluation. If the parentheses were
omitted as in

 SELECT COUNT(*) FROM exped x
 WHERE x.success1 Or x.success2 Or x.success3 Or x.success4 And
 Between(x.year,"1990","1999")

the query would incorrectly yield the result greater than 4800 since the SQL
statement would be the equivalent of

 SELECT COUNT(*) FROM exped x
 WHERE x.success1 Or x.success2 Or x.success3 Or
 (x.success4 And Between(x.year,"1990","1999"))

since the AND operator is normally evaluated before the OR operator.

The order of precedence for the logical operators is NOT, AND, and lastly OR,
and within each of these three categories, the order of precedence is left to right.
To override the order of precedence, parentheses must be used. To ensure that
you are always getting the result you want, use parentheses liberally when in
doubt.

To expand the above example to count all successful Everest expeditions in the
1990s, use the SELECT statement

 SELECT COUNT(*) FROM exped x WHERE x.peakid="EVER" And
 ((x.success1 Or x.success2 Or x.success3 Or x.success4) And
 Between(x.year,"1990","1999"))

16

which gives a count of 168. Note the use of parentheses to force the expression
evaluation to yield the correct result.

You could circumvent this precedence problem by using the following query:

 SELECT COUNT(*) FROM exped x WHERE x.peakid="EVER" And
 Inlist(.T., x.success1, x.success2, x.success3, x.success4) And
 Between(x.year,"1990","1999")

The above discussion is only a brief introduction to SQL’s special function and
the GROUP BY and HAVING clauses. More complete discussions are given in
other publications.

SQL Queries with Sub-Queries

An SQL query may be used to control the results of another query. Normally this
is done by using a sub-query in the WHERE clause that is given in the form

 SELECT field-list FROM table-list
 WHERE value =
 (SELECT field-list FROM table-list
 WHERE condition)

In this form, the SQL language specifies that the sub-query produce a single
value that is passed to the primary query for evaluating the query condition.

For example, to search for the Annapurna I expeditions on which a person
named Reinhold Messner summited you can use the query

 SELECT x.peakid, x.year, x.season FROM exped x
 WHERE x.expid=
 (SELECT m.expid FROM members m
 WHERE m.fname="Reinhold" And m.lname="Messner"
 And m.msuccess And m.peakid="ANN1")

which produces the result

Peakid Year Season
ANN1 1985 1

If the query were changed to

 SELECT x.peakid, x.year, x.season FROM exped x
 WHERE x.expid=
 (SELECT m.expid FROM members m
 WHERE m.fname="Reinhold" And m.lname="Messner"
 And m.msuccess)

17

the query would be erroneous and would generate an “Invalid SQL search
command” error message since the logic of our expression requires a single value
for “x.expid=” clause, while the sub-query produces more than one value because
there are several expeditions on which Reinhold Messner summited. The query
also would have been erroneous if Reinhold Messner had summited on more
than one Annapurna I expedition.

To get around the one-value restriction, we can use the IN operator handle sub-
queries that produce multiple values. Thus, we have

 SELECT x.peakid, x.year, x.season FROM exped x
 WHERE x.expid IN
 (SELECT m.expid FROM members m
 WHERE m.fname="Reinhold" And m.lname="Messner"
 And m.msuccess)

which produces the (partial) result

Peakid Year Season
ANN1 1985 1
DHA1 1985 1
LHOT 1986 3
MAKA 1986 3
CHOY 1983 1
KANG 1982 1
EVER 1980 2
MANA 1972 1
… … …

that gives all of the expeditions on which Reinhold Messner summited.

However, these results are not as useful as they could be. So we will add
Messner’s name to the results with a table-join using the query

 SELECT x.peakid, x.year, x.season, m.fname, m.lname
 FROM exped x, members m
 WHERE x.expid=m.expid And x.expid IN
 (SELECT m.expid FROM members m
 WHERE m.fname="Reinhold" And m.lname="Messner"
 And m.msuccess)

which produces the (partial) result

18

But this still is not quite yet what we want since the results include all other
climbers on the same expeditions as Messner. To eliminate these unwanted
climbers, we can change the query to

 SELECT x.peakid, x.year, x.season, m.fname, m.lname
 FROM exped x, members m
 WHERE x.expid=m.expid And m.lname="Messner"
 And x.expid IN
 (SELECT m.expid FROM members m
 WHERE m.fname="Reinhold" And m.lname="Messner"
 And m.msuccess)

which produces the (partial) result

Peakid Year Season Fname Lname
ANN1 1985 1 Reinhold Messner
CHOY 1983 1 Reinhold Messner
DHA1 1985 1 Reinhold Messner
EVER 1980 2 Reinhold Messner
KANG 1982 1 Reinhold Messner
LHOT 1986 3 Reinhold Messner
MAKA 1986 3 Reinhold Messner
MANA 1972 1 Reinhold Messner
… … … … …

We can dress up the result in a couple of ways. First, we will combine the first
and last name columns, and second, order the result:

 SELECT x.peakid, x.year, x.season,
 Trim(m.fname)+" "+ m.lname AS climber
 FROM exped x, members m
 WHERE x.expid=m.expid And m.lname="Messner"
 And x.expid IN
 (SELECT m.expid FROM members m
 WHERE m.fname="Reinhold" And m.lname="Messner"
 And m.msuccess)
 ORDER BY x.year, x.season

The Visual FoxPro Trim function, removes the trailing blanks from the first
name. Now the (partial) query result is

Peakid Year Season Climber
TILI 1971 3 Reinhold Messner
MANA 1972 1 Reinhold Messner
MNPW 1977 1 Reinhold Messner
EVER 1978 1 Reinhold Messner
EVER 1980 2 Reinhold Messner
KANG 1982 1 Reinhold Messner
CHOY 1983 1 Reinhold Messner
ANN1 1985 1 Reinhold Messner
… … … …

19

Now you may question why we went to all this trouble when a much simpler
query will produce the same result:

 SELECT x.peakid, x.year, x.season,
 Trim(m.fname)+" "+ m.lname AS climber
 FROM exped x, members m
 WHERE x.expid=m.expid And m.fname="Reinhold" And
 m.lname="Messner" And m.msuccess
 ORDER BY x.year, x.season

The answer will be apparent when we expand the last query to search for all
expeditions on which both Reinhold Messner and Hans Kammerlander
summited:

 SELECT x.peakid, x.year, x.season,
 Trim(m.fname)+" "+ m.lname AS climber
 FROM exped x, members m
 WHERE x.expid=m.expid And m.fname="Reinhold" And
 m.lname="Messner" And x.expid IN
 (SELECT m.expid FROM members m
 WHERE m.fname="Reinhold" And m.lname="Messner"
 And m.msuccess)
 And x.expid IN
 (SELECT m.expid FROM members m
 WHERE "Hans" $ m.fname And m.lname="Kammerlander"
 And m.msuccess)
 ORDER BY x.year, x.season

which produces the result

Peakid Year Season Climber
CHOY 1983 1 Reinhold Messner
ANN1 1985 1 Reinhold Messner
DHA1 1985 1 Reinhold Messner
LHOT 1986 3 Reinhold Messner
MAKA 1986 3 Reinhold Messner

The above example also introduces the “$” operator that searches for an
imbedded character string. In this case, since Hans Kammerlander’s complete
name as given in the database is Johann (Hans) Kammerlander, we can search
for “Hans” as the first name by using the expression

 "Hans" $ m.fname

In order to place both climber’s names in the result, we need to alter the query
again by using two sub-queries:

20

 SELECT x.peakid, x.year, x.season,
 "Reinhold Messner & Hans Kammerlander" AS climbers
 FROM exped x, members m
 WHERE x.expid=m.expid And m.fname="Reinhold" And
 m.lname="Messner" And x.expid IN
 (SELECT m.expid FROM members m
 WHERE m.fname="Reinhold" And m.lname="Messner"
 And m.msuccess) And x.expid IN
 (SELECT m.expid FROM members m
 WHERE "Hans" $ m.fname And m.lname="Kammerlander"
 And m.msuccess)
 ORDER BY x.year, x.season

which produces the result

Peakid Year Season Climbers
CHOY 1983 1 Reinhold Messner & Hans Kammerlander
ANNA1 1985 1 Reinhold Messner & Hans Kammerlander
DHA1 1985 1 Reinhold Messner & Hans Kammerlander
LHOT 1986 3 Reinhold Messner & Hans Kammerlander
MAKA 1986 3 Reinhold Messner & Hans Kammerlander

The above query illustrates the technique of placing the character string
“Reinhold Messner & Hans Kammerlander” into the result.

This is also an example where a simple join between two tables would not
produce the desired result since we are requiring another relationship in the
Members table, that is, both Messner and Kammerlander summited the same
peak on the same expedition. Using a simple query such as

 SELECT x.peakid, x.year, x.season,
 Trim(m.fname)+" "+ m.lname AS climber
 FROM exped x, members m
 WHERE x.expid=m.expid And m.fname="Reinhold" And
 m.lname="Messner" And "Hans" $ m.fname And
 m.lname="Kammerlander" And m.msuccess
 ORDER BY x.year, x.season

would always produce an empty result since no single member record has the
name of both Reinhold Messner and Hans Kammerlander.

To make the simpler form of the query work properly, we could join a duplicate
copy of the Members table set the proper relationship for the second climber:

21

 SELECT x.peakid, x.year, x.season,
 Trim(m1.fname)+" "+ m1.lname AS climber_1,
 Trim(m2.fname)+" "+ m2.lname AS climber_2
 FROM exped x, members m1, members m2
 WHERE x.expid=m1.expid And m1.fname="Reinhold" And
 m1.lname="Messner" And m1.msuccess And
 x.expid=m2.expid And "Hans" $ m2.fname And
 m2.lname="Kammerlander" And m2.msuccess
 ORDER BY x.year, x.season

This is an example where alias names must be used for the Member table in
order to distinguish which copy is to be used for each part of the condition
statement in the WHERE clause. The above query produces the result

Peakid Year Season Climber_1 Climber_2
CHOY 1983 1 Reinhold Messner Johann (Hans) Kammerlander
ANN1 1985 1 Reinhold Messner Johann (Hans) Kammerlander
DHA1 1985 1 Reinhold Messner Johann (Hans) Kammerlander
LHOT 1986 3 Reinhold Messner Johann (Hans) Kammerlander
MAKA 1986 3 Reinhold Messner Johann (Hans) Kammerlander

As you can see, there often is more than one way to construct a SQL query for a
particular search. To gain a further understanding of these examples, you should
consult one of the many books devoted to the SQL language.

Visual FoxPro 6 does have some restrictions on the use of sub-queries:

(1) only two sub-queries can be included in the WHERE clause of the
primary query;

(2) sub-queries cannot be nested within other sub-queries;
(3) aggregate functions (such as COUNT, SUM, AVG, etc.) cannot be

used in sub-queries; they are only allowed in the primary query.

The last restriction on the use of aggregate functions with sub-queries is
particularly unfortunate as it greatly restricts the usefulness of correlated sub-
queries (queries that refer to a table in the primary query).

For example in standard SQL, to search for all Americans that summited
Everest more than once, the following SELECT statement could be used:

 SELECT m1.fname, m1.lname, m1.citizen, m1.msmtdate1
 FROM members m1
 WHERE 1 <
 (SELECT COUNT(*) FROM members m2
 WHERE m1.fname=m2.fname And m1.lname=m2.lname And
 m1.peakid=m2.peakid And m1.citizen=m2.citizen And
 m1.msuccess=m2.msuccess And m2.peakid="EVER" And
 m2.citizen="USA" And m2.msuccess)
 ORDER BY m1.lname, m1.fname, m1.msmtdate1

22

But the version of SQL supported by Visual FoxPro 6 does not allow the use of
the aggregate function COUNT(*) in the sub-query (this statement would be
valid in Visual FoxPro 9). Instead, we must use an uncorrelated SELECT
statement:

 SELECT DISTINCT m1.fname, m1.lname, m1.citizen, m1.msmtdate1
 FROM members m1, members m2
 WHERE m1.expid <> m2.expid And
 m1.peakid = m2.peakid And
 m1.peakid ="EVER" And
 m1.fname = m2.fname And
 m1.lname = m2.lname And
 m1.citizen = m2.citizen And
 m1.citizen = "USA" And
 m1.msuccess And m2.msuccess
 ORDER BY m1.lname, m1.fname, m1.msmtdate1

which produces the (partial) result

Fname Lname Citizen Msmtdate1
William Barkley (Bill) Allen USA 23/05/2010
William Barkley (Bill) Allen USA 20/05/2011
William Barkley (Bill) Allen USA 21/05/2016
Robert Mads Anderson USA 26/05/2003
Robert Mads Anderson USA 23/05/2010
Conrad Daniel Anker USA 17/05/1999
Conrad Daniel Anker USA 14/06/2007
Conrad Daniel Anker USA 26/05/2012
Melissa Sue Arnot USA 22/05/2008
Melissa Sue Arnot USA 23/05/2009
Melissa Sue Arnot USA 23/05/2010
... … … …

To search for Americans that summited Everest more than twice, it would be a
simple change to the correlated sub-query (changing “WHERE 1 <” to “WHERE
< 2”), but the necessary modification to the uncorrelated query would be

 SELECT DISTINCT m1.fname, m1.lname, m1.citizen, m1.msmtdate1
 FROM members m1, members m2, members m3
 WHERE m1.expid <> m2.expid And m1.expid <> m3.expid And
 m2.expid <> m3.expid And
 m1.peakid = m2.peakid And m1.peakid = m3.peakid And
 m1.peakid ="EVER" And
 m1.fname = m2.fname And m1.fname = m3.fname And
 m1.lname = m2.lname And m1.lname = m3.lname And
 m1.citizen = m2.citizen And m1.citizen = m3.citizen And
 m1.citizen = "USA" And
 m1.msuccess And m2.msuccess And m3.msuccess
 ORDER BY m1.lname, m1.fname, m1.msmtdate1

23

which is a more complex statement than the correlated version. Even more
complex would be the SELECT statement to search for Americans that
summited Everest more than three times, etc.

To obtain only a list of the Americans that summited Everest more than once
without their summit dates or a count number of times each one summited, a
simple query using the GROUP BY and HAVING clauses may be used:

 SELECT m.fname, m.lname, m.citizen
 FROM members m
 WHERE m.peakid = "EVER" And
 m.citizen = "USA" And m.msuccess
 GROUP BY m.lname, m.fname, m.citizen
 HAVING COUNT(*) > 1
 ORDER BY m.lname, m.fname

The GROUP BY clause groups together the summit records for each climber and
the HAVING clause selects out those climbers with more than one summit
success. The COUNT(*) function in this context counts the records in each group.
The (partial) output for the above query is

Fname Lname Citizen
William Barkley (Bill) Allen USA
Robert Mads Anderson USA
Conrad Daniel Anker USA
Melissa Sue Arnot USA
Peter George (Pete) Athans USA
Neal Jay Beidleman USA
Damian Benagas USA
Guillermo (Willie) Benegas USA
Luis Guillermo Benitez USA
Wallace Wayne (Wally) Berg USA
Julio J. Bird USA
Brent Russell Bishop USA
Christine Joyce Feld Boskoff USA
… … …

Only one record per group is included in the output of the SELECT statement, so
this statement cannot list all of the summit dates or the summit count for each
climber as was done in the preceding examples.

In a later section, we will illustrate how to use the results of this query to obtain
the results that we really want.

Special SQL Operators with Sub-Queries

The SQL language has several special operators that always take sub-queries as
arguments:

 EXISTS sub-query returns true if the sub-query produces any

results; false if it does not.

24

 value = ANY sub-query returns true if any of the results of the sub-

query are equal to “value.”

 value = ALL sub-query returns true if all of the results of the sub-query

are equal to “value.”

Of these three, EXISTS is probably the most useful. The NOT operator may be
combined with these special operators.

The following paragraphs build an example in two steps that searches for all-
women’s expeditions on which an American woman summited. The first step
searches for any expedition on which an American woman summited:

 SELECT DISTINCT x.peakid, x.year, x.season, x.nation, x.leaders,
 Trim(m1.fname)+" "+ m1.lname AS climber
 FROM exped x, members m1
 WHERE x.expid=m1.expid And m1.msuccess And
 Upper(m1.citizen)="USA" And m1.sex="F"
 ORDER BY x.year, x.season

The first 10 records produced in the output are

Peakid Year Season Nation Leaders Climber
URKM 1974 3 USA Bill Roos Judy Rearick
ANN1 1978 3 USA Arlene Blum Irene Miller
HIUP 1981 3 USA Eric Simonson Bonnie M. Nobori
HIUP 1981 3 USA Eric Simonson Laverne G. Woods
PUMO 1981 4 USA Ned Gillette Jan Reynolds
AMAD 1982 1 USA Sue Giller Anne Macquaire
AMAD 1982 1 USA Sue Giller Jineen (Jini) Griffiths
AMAD 1982 1 USA Sue Giller Lucylle (Lucy) Smith
AMAD 1982 1 USA Sue Giller Sharon (Shari) Kearney
AMAD 1982 1 USA Sue Giller Stacy Allison
… … … … … …

The second step uses the EXISTS operator combined with the NOT operator to
restrict the output further to include only all-women’s expeditions:

 SELECT DISTINCT x.peakid, x.year, x.season, x.nation, x.leaders,
 Trim(m1.fname)+" "+ m1.lname AS climber
 FROM exped x, members m1
 WHERE x.expid=m1.expid And m1.msuccess And
 Upper(m1.citizen)="USA" And m1.sex="F" And
 NOT EXISTS
 (SELECT * FROM members m2
 WHERE x.expid=m2.expid And m2.sex="M" And Not
 m2.hired And Not m2.nottobc And Not m2.bconly)
 ORDER BY x.year, x.season

25

The sub-query selects all records from each expedition that had non-hired males
that went above base camp. Using only the EXISTS operator, the full SQL
statement would include these expeditions; using NOT EXISTS, the full
statement eliminates these expeditions.

The final 13 records of output produced by the query is

Peakid Year Season Nation Leaders Climber
ANN1 1978 3 USA Arlene Blum Irene Miller
AMAD 1982 1 USA Sue Giller Anne Macquaire
AMAD 1982 1 USA Sue Giller Jineen (Jini) Griffiths
AMAD 1982 1 USA Sue Giller Lucylle (Lucy) Smith
AMAD 1982 1 USA Sue Giller Sharon (Shari) Kearney
AMAD 1982 1 USA Sue Giller Stacy Allison
AMAD 1982 1 USA Sue Giller Susan Ann (Sue) Giller
AMAD 1982 1 USA Sue Giller Susan H. Havens
CHOY 1999 1 USA Amy (Supy) Bullard Amy (Supy) Bullard
CHOY 1999 1 USA Amy (Supy) Bullard Georgie Wilmerding Stanley
CHOY 1999 1 USA Amy (Supy) Bullard Kathryn Miller Hess
AMAD 2003 3 USA Angela Hawse Angela Jo Hawse
AMAD 2003 3 USA Angela Hawse Eleanor K. (Ellie) Pryor
… … … … … …

The following example combines both EXISTS and NOT EXISTS to search for all
Everest expeditions on which only the hired members summited and produces
the accompanying output:

 SELECT DISTINCT x.peakid, x.year, x.season, x.nation, x.leaders
 FROM exped x
 WHERE x.peakid = "EVER"
 And EXISTS
 (SELECT * FROM members m
 WHERE x.expid=m.expid And m.msuccess And m.hired)
 And NOT EXISTS
 (SELECT * FROM members m
 WHERE x.expid=m.expid And m.msuccess And Not m.hired)
 ORDER BY x.year, x.season

Peakid Year Season Nation Leaders
EVER 1991 1 UK Harold Taylor
EVER 1995 1 New Zealand Rob Hall
EVER 1998 1 S Africa Ian Woodall
EVER 2000 1 USA Vernon Tejas
EVER 2003 1 Belgium Robert Huygh
EVER 2003 1 Spain Jesus Elena Vera
EVER 2003 1 USA Bill Crouse
EVER 2005 1 S Korea Um Hong-Gil
EVER 2007 1 Pakistan Muhammed Faizan
EVER 2009 1 France Marc Batard
… … … … …

26

The following example searches for all Everest summiters that have summited
from both sides of the mountain:

 SELECT DISTINCT Trim(m1.fname)+" "+m1.lname AS name,
 m1.citizen, m1.yob
 FROM exped x, members m1
 WHERE x.expid=m1.expid And m1.peakid="EVER" And
 x.host=1 And m1.msuccess And EXISTS
 (SELECT * FROM exped x, members m2
 WHERE x.expid=m2.expid And m1.fname=m2.fname And
 m1.lname=m2.lname And m1.yob=m2.yob And
 m2.peakid="EVER" And x.host=2 And m2.msuccess)
 ORDER BY name

The main query searches for all south-side Everest summiters (x.host=1) and
then uses the EXISTS operator with a sub-query to search the result for those
that also summited from the north side (x.host=2). Two different aliases (m1 and
m2) for the Member table are required since Member fields in the sub-query are
compared to Member fields in the main query.

The DISTINCT keyword is needed so that each summiter is listed only once.
Note that two output lines are given for Anatoli Boukreev since he was a citizen
of two different countries while he was summiting Everest. We could have
eliminated the second Boukreev line if “m.citizen” was not included in the query
output list, but without that column the table might be less useful.

The output produced is

Name Citizen Yob
Abele Blanc Italy 1954
Abudul Khalim (Abu) Elmezov Russia 1957
Aldo Hiram Valencia Corona Mexico 1978
Alexander (Alex) Abramov Russia 1964
Alexia Zelda Cecile Zuberer Switzerland 1972
Alf Robin Trygg Sweden 1986
Ali Nasuh Mahruki Turkey 1968
Amar Prakash Dogra India 1963
Anatoli Boukreev Kazakhstan 1958
Anatoli Boukreev USSR 1958
Andre Victor Bredenkamp S Africa 1957
Andrew Atis (Andy) Lapkass USA 1958
Ang Babu (Jimba Zangbu) Sherpa Nepal 1974
Ang Chhiring (Ang Tshering) Sherpa Nepal 1952
Ang Dawa (Dawa) Tamang Nepal 1972
Ang Dawa Sherpa Nepal 1964
Ang Dawa Sherpa Nepal 1978
Ang Dawa Sherpa Nepal 1982
Ang Dawa Sherpa Nepal 1984
Ang Gelu Sherpa Nepal 1970
Ang Gelu Sherpa Nepal 1986
… … …

27

Combining Multiple Queries with the UNION Clause

The UNION clause is used to merge the output from two or more queries into a
single result. The form for merging two queries is

 query1 UNION query2

and for three queries is

 query1 UNION query2 UNION query3

The output from each of the queries must be union-compatible, that is, each
query must specify the same number of columns in the output and each column
must be of the same type in all of the queries.

The following paragraphs build an example that searches for the youngest and
oldest summiters on Everest by combining two queries. The first query searches
for summiters that are 15 years old or less:

 SELECT m.peakid, m.myear, m.mseason, m.calcage AS age,
 Trim(m.fname)+" "+ m.lname AS climber
 FROM members m
 WHERE m.peakid="EVER" And m.msuccess And
 Between(m.calcage,1,15)
 ORDER BY m.calcage

The Between function is used to search for ages between 1 and 15 in order to
exclude those climbers with an age of 0 (age unknown). The output from the
query is

Peakid Myear Mseason Age Climber
EVER 2010 1 13 Jordan Romero
EVER 2014 1 13 Malavath Poorna
EVER 2003 1 15 Mingkipa Sherpa
EVER 2013 1 15 Raghav Joneja

The second query searches for summiters that are 70 years old or more:

 SELECT m.peakid, m.myear, m.mseason, m.calcage AS age,
 Trim(m.fname)+" "+ m.lname AS climber
 FROM members m
 WHERE m.peakid="EVER" And m.msuccess And m.calcage >= 70
 ORDER BY m.calcage

The output from this query is:

28

Peakid Myear Mseason Age Climber
EVER 2003 1 70 Yuichiro Miura
EVER 2006 1 70 Takao Arayama
EVER 2009 1 70 Nikolai Dmitrievich Cherny
EVER 2007 1 71 Katsusuke Yanagisawa
EVER 2011 1 71 Tatsuo Matsumoto
EVER 2014 1 72 William Mitchell (Bill) Burke
EVER 2012 1 73 Tamae Watanabe
EVER 2008 1 75 Yuichiro Miura
EVER 2008 1 76 Min Bahadur Sherchan
EVER 2013 1 80 Yuichiro Miura

The UNION clause now combines these two queries into a single query:

 SELECT m.peakid, m.myear, m.mseason, m.calcage AS age,
 Trim(m.fname)+" "+ m.lname AS climber
 FROM members m
 WHERE m.peakid="EVER" And m.msuccess And
 Between(m.calcage,1,15)

 UNION

 SELECT m.peakid, m.myear, m.mseason, m.calcage AS age,
 Trim(m.fname)+" "+ m.lname AS climber
 FROM members m
 WHERE m.peakid="EVER" And m.msuccess And m.calcage >= 70

 ORDER BY 4

The output from the combined query is:

Peakid Myear Mseason Age Climber
EVER 2010 1 13 Jordan Romero
EVER 2014 1 13 Malavath Poorna
EVER 2003 1 15 Mingkipa Sherpa
EVER 2013 1 15 Raghav Joneja
EVER 2003 1 70 Yuichiro Miura
EVER 2006 1 70 Takao Arayama
EVER 2009 1 70 Nikolai Dmitrievich Cherny
EVER 2007 1 71 Katsusuke Yanagisawa
EVER 2011 1 71 Tatsuo Matsumoto
EVER 2014 1 72 William Mitchell (Bill) Burke
EVER 2012 1 73 Tamae Watanabe
EVER 2008 1 75 Yuichiro Miura
EVER 2008 1 76 Min Bahadur Sherchan
EVER 2013 1 80 Yuichiro Miura

The ORDER BY clause must use column numbers instead of field names since
there no requirement by SQL that the column names be the same for each of the
queries. The above example orders the output in ascending order by the 4th
column.

29

Also when you enter the query in the query dialog, make sure that UNION and
other keywords have blanks separating them from the rest of the query text.

Using the Results of One Query for a Subsequent Query

The output from a query may be saved in a database table instead of being
displayed in a browse window by using the INTO clause

 INTO TABLE output-table-name

Earlier we gave an example to list all American climbers that summited Everest
more than once. We now modify this example to search for American climbers
that summited ten or more times and to save the output in the table EVER10:

 SELECT m.fname, m.lname, m.citizen
 FROM members m
 INTO TABLE EVER10
 WHERE m.peakid = "EVER" And
 m.citizen = "USA" And m.msuccess
 GROUP BY m.lname, m.fname, m.citizen
 HAVING COUNT(*) >= 10
 ORDER BY m.lname, m.fname

The output produced is

Fname Lname Citizen
Guillermo (Willie) Benegas USA
David Allen (Dave) Hahn USA
Vernon Edward (Vern) Tejas USA

We can now use this table in a sub-query to a SQL statement that lists all
American climbers that summited Everest six times or more:

 SELECT m.fname, m.lname, m.citizen, m.msmtdate1
 FROM members m
 WHERE m.peakid ="EVER" And
 m.citizen = "USA" And
 m.msuccess And EXISTS
 (SELECT * FROM EVER10 q
 WHERE q.fname = m.fname And
 q.lname = m.lname And
 q.citizen = m.citizen)
 ORDER BY m.lname, m.fname, m.msmtdate1

The output produced is

30

Fname Lname Citizen Msmtdate1
Guillermo (Willie) Benegas USA 12/05/1999
Guillermo (Willie) Benegas USA 23/05/2001
Guillermo (Willie) Benegas USA 16/05/2002
Guillermo (Willie) Benegas USA 17/05/2004
Guillermo (Willie) Benegas USA 30/05/2005
Guillermo (Willie) Benegas USA 16/05/2007
Guillermo (Willie) Benegas USA 21/05/2008
Guillermo (Willie) Benegas USA 19/05/2009
Guillermo (Willie) Benegas USA 23/05/2010
Guillermo (Willie) Benegas USA 25/05/2012
David Allen (Dave) Hahn USA 19/05/1994
David Allen (Dave) Hahn USA 17/05/1999
David Allen (Dave) Hahn USA 22/05/2000
David Allen (Dave) Hahn USA 30/05/2003
David Allen (Dave) Hahn USA 20/05/2004
David Allen (Dave) Hahn USA 30/05/2005
David Allen (Dave) Hahn USA 23/05/2006
David Allen (Dave) Hahn USA 18/10/2006
David Allen (Dave) Hahn USA 21/05/2007
David Allen (Dave) Hahn USA 27/05/2008
David Allen (Dave) Hahn USA 23/05/2009
David Allen (Dave) Hahn USA 25/05/2010
David Allen (Dave) Hahn USA 21/05/2011
David Allen (Dave) Hahn USA 26/05/2012
David Allen (Dave) Hahn USA 23/05/2013
Vernon Edward (Vern) Tejas USA 12/05/1992
Vernon Edward (Vern) Tejas USA 25/05/2002
Vernon Edward (Vern) Tejas USA 30/05/2003
Vernon Edward (Vern) Tejas USA 24/05/2004
Vernon Edward (Vern) Tejas USA 30/05/2005
Vernon Edward (Vern) Tejas USA 20/05/2006
Vernon Edward (Vern) Tejas USA 22/05/2007
Vernon Edward (Vern) Tejas USA 24/05/2008
Vernon Edward (Vern) Tejas USA 24/05/2010
Vernon Edward (Vern) Tejas USA 22/05/2013

Since the output of the above query contains a date field, if you save the output
to an Excel file, you will be prompted for the date format (Macintosh or
Windows) because Excel uses different base dates in the two platforms.

If the first and second queries are done in the same Himal session, the EVER10
table is automatically available. If the second query is done at later time, you
will be prompted to locate the EVER10 table (usually it will be found in the
Himalayan Database folder).

31

Special Visual FoxPro Functions and Operators

The following Visual FoxPro program functions can be used in SELECT
statements or to enhance the appearance of the output:

 Trim(…) removes trailing blanks from “…”
 Upper(…) converts to “…” to uppercase
 Left(…,n) returns leftmost “n” characters of “…”

The “==” operator forces an exact match for a character string comparison. For
example, the expression

 m.lname = "Hunt"

matches Hunt, Hunter, Huntington, etc., while the expression

 m.lname == "Hunt"

matches only Hunt and is equivalent to

 Left(m.lname,4) = "Hunt"

The “==” operator can be used in SQL statement conditions as well as
conditional statements for the Browse, Search and Export commands.

Special Himal Functions

The following Himal program functions can be used in SELECT statements to
enhance the appearance of the output by translating the underlying numeric
field codes to their character definitions:

 Season(…) translates expedition or member season codes to

“Spring”, “Summer”, “Autumn” and “Winter”
 Host(…) translates expedition host codes to “Nepal”, “China”

and “India”
 Phost(…) translates peak host codes
 Reason(…) translates expedition termination codes
 Death(…) translates member death codes
 DeathClass(…) translates member death class codes
 Injury(…) translates member injury codes
 MAboveBC(...) returns the number of members above base camp for

an expedition
 GetHost1(expid) returns expedition host code as N, C or I
 GetHost2(expid) returns expedition host code as 1, 2 or 3

The argument “…” for each of the above functions is the relevant table field-
name. The definitions for the above numeric field codes are given with the table
structure descriptions in Appendix B.

32

For example, our first query could be rewritten as

 SELECT x.year, Season(x.season) AS season, x.mdeaths, x.hdeaths
 FROM exped x
 WHERE x.peakid="EVER" And x.mdeaths+x.hdeaths>0 And
 Between(x.year,"1995","1996")

and would produce the output

Year Season Mdeaths Hdeaths
1995 Spring 0 1
1995 Autumn 0 1
1995 Autumn 0 1
1995 Autumn 1 0
1996 Spring 4 0
1996 Spring 1 1
1996 Spring 1 0
1996 Spring 1 0
1996 Spring 1 0
1996 Spring 3 0
1996 Autumn 1 0
1996 Autumn 0 1
1996 Autumn 0 1

The Season function is used with the “AS season” keyword to avoid the
internally generated column title of Exp_2.

As another example, we can use the following query to obtain the number of
members that went above base camp for all Everest expeditions between 1950
and 1960:

 SELECT x.expid, x.nation, x.leaders, x.totmembers,
 mabovebc(x.expid) AS "memabvbc"
 FROM exped x
 WHERE x.peakid="EVER" And Between(x.year,"1950","1960")
 ORDER BY x.expid

This produces the output:

Expid Nation Leaders Totmembers Memabvbc
EVER50301 USA Charles Houston 5 0
EVER51101 Denmark Klavs Becker-Larsen 1 1
EVER51301 UK Eric Shipton 6 6
EVER52101 Switzerland Edouard Wyss-Dunant 11 9
EVER52301 Switzerland Gabriel Chevalley 7 7
EVER52302 USSR Pawel Datschnolian 40 0
EVER53101 UK John Hunt 13 13
EVER56101 Switzerland Albert Eggler 11 11
EVER58101 China Xu Jing, Yevgeniy Beletski 13 0
EVER60101 India Gyan Singh 22 17
EVER60102 China Shi Zhang-Chun 29 29

33

We can eliminate the four expeditions that did not attempt the climb by adding
the HAVING clause to the query:

 SELECT x.expid, x.nation, x.leaders, x.totmembers,
 mabovebc(x.expid) AS "memabvbc"
 FROM exped x
 WHERE x.peakid="EVER" And Between(x.year,"1950","1960")
 HAVING mabovebc(x.expid) > 0
 ORDER BY x.expid

This removes the two expeditions that had no members above base camp.

The GROUP BY clause can be used to aggregate the counts by year:

 SELECT x.year, Sum(x.totmembers),
 Sum(mabovebc(x.expid)) AS "sum_memabvbc"
 FROM exped x
 WHERE x.peakid="EVER" And Between(x.year,"1950","1960")
 GROUP BY x.year
 HAVING Sum(mabovebc(x.expid)) > 0
 ORDER BY x.year

which produces the result

Year Sum_totmembers Sum_memabvbc
1951 7 7
1953 13 13
1956 11 11
1960 51 46

The “x.expid, x.nation, x.leaders, x.totmembers” fields must not be included in
the SELECT field list because the GROUP BY clause requires that each of the
fields within a group have the same value except for those fields that are being
summed or define the group boundaries; otherwise incorrect results may occur.

Note that in Visual FoxPro 9 the HAVING clause must be expressed as

 HAVING Sum(mabovebc(x.expid)) > 0

where the Sum function is used to correspond to Sum function in the field-list. In
Visual FoxPro 6, the syntax of the clause is more relaxed and allows

 HAVING mabovebc(x.expid) > 0

The final example uses the GetHost2 function to select the members that
summited Everest from both the north and south sides in the same season and
returns one record for David Liano Gonzalez (as of 2016):

34

 SELECT Trim(m1.fname)+" "+Trim(m1.lname) AS name, m1.citizen,
 m1.residence, m1.calcage, m1.myear, m1.mseason, m1.msmtdate1
 AS EverestS, m2.msmtdate1 AS EverestN
 FROM members m1, members m2
 WHERE m1.myear=m2.myear And m1.mseason=m2.mseason
 And m1.peakid="EVER" And Gethost2(m1.expid)=1
 And m2.peakid="EVER" And Gethost2(m2.expid)=2
 And m1.msuccess And m2.msuccess
 And m1.fname=m2.fname And m1.lname=m2.lname
 And m1.yob=m2.yob And m1.residence=m2.residence
 ORDER BY m1.myear, m1.mseason

Notes on Visual FoxPro and Excel Date Formats

Dates in Visual FoxPro and Microsoft Excel are stored internally in Julian
format that is defined as the number of days from a fixed base date. The base
dates (Julian day 0) used are:

 Microsoft Visual FoxPro September 14, 1752
 Microsoft Excel for Windows January 0, 1900
 Microsoft Excel for Macintosh
 (Office 2008 or earlier) January 1, 1904
 (a 1462-day difference between versions of Excel)
 Microsoft Excel for Macintosh
 (Office 2011 or earlier) January 0, 1900

Excel for Macintosh in Office 2008 or earlier had a different base date because it
was trying to avoid the problem that 1900 was not a leap year. To calculate a
leap year, the year must be divisible by 4, but not 100, with the exception that it
is a leap year when divisible by 400 (thus 1900 and 2100 are not leap years, but
2000 is a leap year). But this difference in base dates caused other issues when
tying to reconcile dates in Excel sheets between the Windows and the Macintosh
operating systems. With Excel for Macintosh in Office 2011 and later, both
versions of Excel became the same with regards to the base dates.

This difference in Julian base dates can cause certain problems when exporting
data containing dates from the Himalayan Database to Excel files.

If you are working entirely within the Windows operating systems (the normal
case for most users), then the Julian base date conversions are handled
automatically between Visual FoxPro and Excel. If your export file contains any
date fields, you are prompted to specify the base date format:

35

Dedicated Windows users should use the default Windows-based date format
choice and just click the OK button (Macintosh users will see a corresponding
screen that defaults to the Macintosh-based date format). Visual FoxPro then
exports an unmarked file with dates that use the specified Julian base date
format (the file is unmarked as to which format is being used).

When Excel opens the file for the first time, it marks the file as to the base date
format assumed: Excel for Windows assumes Windows-based dates and Excel for
Macintosh assumes Macintosh-based dates (the file must be saved to retain the
marking.)

The file may be reopened at a later time in either version of Excel (Windows or
Macintosh) and the date fields will be properly adjusted for the 1462-day
difference in base dates since the base date format was marked on the first
opening. Excel for Windows adjusts for Macintosh-based dates, and Excel for
Macintosh adjusts for Window-based dates.

However, if you work with both the Windows and Macintosh operating systems,
then the base date issue becomes more complex. When you export Excel files
from Visual FoxPro, you must select the correct base date format for the version
of Excel that you plan to use for the first opening of the file. If you are running
the Windows version of the Himal program and wish to open the file first in
Excel for Macintosh, you must select one of the Macintosh-based dates
depending upon the version of Office/Excel you are using; if you are running the
Macintosh version of the Himal program and wish to open the file first in Excel
for Windows, you must select Windows-based dates.

For those users that are running the Windows version of the Himal program on
an Intel-based Macintosh using Parallels (or Fusion), there are additional
considerations. You have the option of installing and using Excel for Windows in
your Parallels Window-partition, or having Parallels invoke Excel for Macintosh
from your Macintosh partition while running in your Windows environment. If
you wish to use Excel for Windows, you must select Windows-based dates. If you

36

wish to use Excel for Macintosh, you must select Macintosh-based dates and also
move the file from the Windows partition to the Macintosh partition before first
opening it, since Excel for Macintosh cannot properly open in the Windows
partition files exported from Visual FoxPro that contain dates (the error message
“File format not valid” is displayed and the file cannot be opened).

For those users that are running the Windows version of the Himal program on
an Intel-based Macintosh using CrossOver or WineBottler, you should select one
of the two Macintosh-based dates depending upon the version of Excel for
Macintosh you are using (Office 2008 or earlier, or Office 2011 or later).

Additional SQL Features Available for Visual FoxPro 6

With newer versions of Visual FoxPro, enhancements have been added to SQL
support. The following SQL92 language enhancements have been added to
Visual FoxPro 6 and later and are available to the SELECT command in the
original (CD-Rom) VFP-6 Windows version 1.x of The Himalayan Database.

The simplest form of the SELECT statement placed into the WHERE clause the
join-conditions that described how multiple tables are linked:

 SELECT field-list FROM table-list
 WHERE join-conditions AND search-conditions
 ORDER BY order-list

But now these “join-conditions” may be placed into the FROM clause instead

 SELECT field-list FROM table-list join-conditions
 WHERE search-conditions
 ORDER BY order-list

which helps to give greater clarity to the SELECT command and also offers some
additional capability.

For example, the earlier two-table SQL example that searched for all climbers
over age 50 that have summited an 8000m peak

 SELECT p.peakid, p.pkname, m.lname, m.fname, m.citizen, m.calcage
 FROM members m, peaks p
 WHERE m.peakid=p.peakid And m.msuccess And
 m.calcage>=50 And p.heightm>=8000

could be rewritten using the JOIN-ON clause as

 SELECT p.peakid, p.pkname, m.lname, m.fname, m.citizen, m.calcage
 FROM members m
 JOIN peaks p ON m.peakid=p.peakid
 WHERE m.msuccess And m.calcage>=50 And p.heightm>=8000

37

and the two-table SQL example that searched for all American and Canadian
women that attempted Everest before the year 2000 from the Nepal side

 SELECT m.peakid, x.host, m.fname, m.lname, m.citizen
 FROM members m, exped x
 WHERE m.expid=x.expid And m.sex="F" And
 Inlist(Upper(m.citizen),"USA","CANADA") And
 m.myear<"2000" And x.host=1 And m.peakid="EVER"
 ORDER BY m.myear, m.mseason

could be rewritten as

 SELECT m.peakid, x.host, m.fname, m.lname, m.citizen
 FROM members m JOIN exped x ON m.expid=x.expid
 WHERE m.sex="F" And
 Inlist(Upper(m.citizen),"USA","CANADA") And
 m.myear<"2000" And x.host=1 And m.peakid="EVER"
 ORDER BY m.myear, m.mseason

and the three-table example that substituted the peak name into the result of
the query instead of the peak ID

 SELECT p.pkname, x.host, m.fname, m.lname, m.citizen
 FROM members m, peaks p, exped x
 WHERE m.peakid=p.peakid And m.expid=x.expid And m.sex="F" And
 Inlist(Upper(m.citizen),"USA","CANADA") And
 m.myear<"2000" And x.host=1 And m.peakid="EVER"
 ORDER BY m.myear, m.mseason

could be rewritten as

 SELECT p.pkname, x.host, m.fname, m.lname, m.citizen
 FROM members m
 JOIN peaks p ON m.peakid=p.peakid
 JOIN exped x ON m.expid=x.expid
 WHERE m.sex="F" And
 Inlist(Upper(m.citizen),"USA","CANADA") And
 m.myear<"2000" And x.host=1 And m.peakid="EVER"
 ORDER BY m.myear, m.mseason

In each of the JOIN-ON variations given above, the parent table Members is
specified first after the FROM keyword and the child tables, Exped and/or
Peaks, are specified after the JOIN keywords. In the last case where there are
two child tables, both joins are specified sequentially. The join conditions could
also be given as

 FROM peaks p
 JOIN members m ON m.peakid=p.peakid
 JOIN exped x ON m.expid=x.expid

38

but not as

 FROM peaks p
 JOIN exped x ON m.expid=x.expid
 JOIN members m ON m.peakid=p.peakid

since “m.expid” cannot be used in the first JOIN before “members m” is specified
in the second JOIN.

In all of the above cases, whether specifying the join-conditions by using the
WHERE clause or by using the JOIN-ON clause, the joins are inner joins which
means that the matching values must be contained in both of the joined tables.

The full syntax is actually specified as

 FROM members m
 INNER JOIN exped x ON m.expid=x.expid

but since the INNER keyword is the default, it is usually never given.

The additional capabilities alluded to above allow the specification of outer joins
where all records from one table (whether they match or not with records in the
other table) are included in the query result. A left outer join includes all records
of the table to the left of the JOIN keyword, while a right outer join includes all
records of the table to the right of the JOIN keyword; they are specified as

 LEFT OUTER JOIN (or just LEFT JOIN)
 RIGHT OUTER JOIN (or just RIGHT JOIN)

The concept of outer joins is best illustrated by the following series of three
examples that generate lists of expeditions with decedents from the autumn
1984 Everest expeditions that had fatalities. The first example using inner joins
shows three equivalent ways to generate a simple list:

(1) SELECT x.expid, x.nation, x.leaders,
 Trim(m.fname)+" "+ m.lname AS name
 FROM exped x, members m
 WHERE x.expid=m.expid And x.peakid="EVER" And
 x.year="1984" And x.season=3 And m.death
 ORDER BY x.expid

(2) SELECT x.expid, x.nation, x.leaders,
 Trim(m.fname)+" "+ m.lname AS name
 FROM exped x
 JOIN members m ON x.expid=m.expid
 WHERE x.peakid="EVER" And x.year="1984" And
 x.season=3 And m.death
 ORDER BY x.expid

39

(3) SELECT x.expid, x.nation, x.leaders,
 Trim(m.fname)+" "+ m.lname AS name
 FROM exped x
 JOIN members m ON x.expid=m.expid And m.death
 WHERE x.peakid="EVER" And x.year="1984" And x.season=3
 ORDER BY x.expid

The result of query (given below) lists only those expeditions that had fatalities:

Expid Nation Leaders Name
EVER84302 Nepal Yogendra Thapa Yogendra Bahadur Thapa
EVER84302 Nepal Yogendra Thapa Ang Dorje Sherpa
EVER84304 New Zealand Peter Hillary William Robert (Fred) From
EVER84304 New Zealand Peter Hillary Craig Rupert Nottle
EVER84306 Czechoslovakia Frantisek Kele Jozef Psotka

The third variation moves the “m.death” condition from the WHERE clause to
the ON predicate of the JOIN-ON clause. When the death condition is included
with the WHERE clause, it applies to all tables in the SELECT command, but
when it is included with the ON predicate, it only applies to the Members table.
For an inner join, there is no difference in the result, but it does make a
difference when using outer joins. Thus we can rewrite the last example using a
left outer join as

 SELECT x.expid, x.nation, x.leaders,
 Trim(m.fname)+" "+ m.lname AS name
 FROM exped x
 LEFT JOIN members m ON x.expid=m.expid And m.death
 WHERE x.peakid="EVER" And x.year="1984" And x.season=3
 ORDER BY x.expid

to produce an expanded table that also lists the expeditions that did not have
fatalities:

Expid Nation Leaders Name
EVER84301 Australia Geoffrey Bartram .NULL.
EVER84302 Nepal Yogendra Thapa Yogendra Bahadur Thapa
EVER84302 Nepal Yogendra Thapa Ang Dorje Sherpa
EVER84303 USA Lou Whittaker .NULL.
EVER84304 New Zealand Peter Hillary William Robert (Fred) From
EVER84304 New Zealand Peter Hillary Craig Rupert Nottle
EVER84305 Netherlands Herman Plugge .NULL.
EVER84306 Czechoslovakia Frantisek Kele Jozef Psotka

The .NULL. result is inserted into the name field of the rows with no matches,
and when exported to Excel, they appear as blank cells.

40

Additional SQL Features Available for Visual FoxPro 9

The following SQL92 language enhancements have been added to Visual FoxPro
9 and are available to the SELECT command in the current VFP-9 Windows
version 2.0 of The Himalayan Database.

The restrictions on the use of sub-queries mentioned earlier are removed:

(1) multiple sub-queries can be included in the WHERE clause of the
primary query (the previous restriction was two sub-queries);

(2) sub-queries may be nested within other sub-queries;
(3) aggregate functions (such as COUNT, SUM, AVG, etc.) can be used

in sub-queries.

The removal of last restriction on the use of aggregate functions with sub-
queries is particularly fortunate as it greatly enhances the usefulness of
correlated sub-queries (queries that refer to a table in the primary query).

For example, in standard SQL92, to search for all ethnic Sherpas that summited
Everest fifteen times or more, the following SELECT statement could be used:

 SELECT Trim(m1.fname)+" "+m1.lname AS name, m1.residence,
 m1.yob, m1.msmtdate1
 FROM members m1
 WHERE 15 <=
 (SELECT COUNT(*) FROM members m2
 WHERE m1.fname=m2.fname And m1.lname=m2.lname And
 m1.residence=m2.residence And m1.yob=m2.yob And
 m1.sherpa=m2.sherpa And m1.msuccess=m2.msuccess And
 m1.peakid=m2.peakid And m2.peakid="EVER" And
 m2.sherpa And m2.msuccess)
 ORDER BY m1.lname, m1.fname, m1.msmtdate1

In the above example, the phrases “m1.residence=m2.residence” and
“m1.yob=m2.yob” are required in the sub-query WHERE clause since individual
Sherpas in the database are identified by their home (birth) village and year of
birth as well as their name.

The output produced is a rather long list of Sherpas in alphabetic order with one
row for each summit (along with the summit date).

41

Name Residence Yob Msmtdate1
Apa (Appa) Sherpa Thami Og, Khumbu 1960 5/10/1990
… … … …
Apa (Appa) Sherpa Thami Og, Khumbu 1960 1/05/2011
Chhuwang Nima Sherpa Tesho, Khumbu 1967 13/05/1994
… … … …
Chhuwang Nima Sherpa Tesho, Khumbu 1967 05/05/2010
Chuldim Dorje (Ang Dorje) Sherpa Pangboche, Khumbu 1964 12/05/1992
… … … …
Chuldim Dorje (Ang Dorje) Sherpa Pangboche, Khumbu 1964 19/05/2016
Dorje (Dorje Lambu, Big Dorje) Sherpa Thamo, Khumbu 1965 15/05/1992
… … … …
Dorje (Dorje Lambu, Big Dorje) Sherpa Thamo, Khumbu 1965 15/05/1992
Kami Rita (Topke) Sherpa Thami, Khumbu 1970 13/05/1994
… … … …

But if we want a more compact list that gives only the names of the Sherpas
along with a count of their summits, we can modify the above example by
placing the “COUNT(*) AS count” expression in the output field list in place of
the summit date:

 SELECT Trim(m1.fname)+" "+m1.lname AS name, m1.residence,
 m1.yob, COUNT(*) AS count
 FROM members m1
 WHERE 15 <=
 (SELECT COUNT(*) FROM members m2
 WHERE m1.fname=m2.fname And m1.lname=m2.lname And
 m1.residence=m2.residence And m1.yob=m2.yob And
 m1.sherpa=m2.sherpa And m1.msuccess=m2.msuccess And
 m1.peakid=m2.peakid And m2.peakid="EVER" And
 m2.sherpa And m2.msuccess)
 GROUP BY name, m1.residence, m1.yob
 ORDER BY count DESC, name

The output produced list each Sherpa in alphabetic order and each row gives the
number of summits for that Sherpa:

Name Residence Yob Count
Apa (Appa) Sherpa Thami Og, Khumbu 1960 21
Chuldim Dorje (Ang Dorje) Sherpa Pangboche, Khumbu 1964 18
Kami Rita (Topke) Sherpa Thami, Khumbu 1970 18
Mingma Tshering/Tsiri Sherpa Beding, Dolakha 1970 18
Chuwang Nima Sherpa Tesho, Khumbu 1967 17
Nima Gombu (Gombu) Sherpa Beding, Dolakha 1969 17
Lhakpa Rita Sherpa Thami, Khumbu 1966 16
Pasang Dawa (Pa Dawa, Pando) Sherpa Pangboche, Khumbu 1977 16
Tshering Dorje Sherpa Kharikhola, Solukhumbu 1970 16
Dorje (Dorje Lambu, Big Dorje) Sherpa Thamo, Khumbu 1965 15
Lhakpa Gelu Sherpa Kharikhola, Solukhumbu 1967 15
Mingma Chhiri/Chhiring Sherpa Thami, Khumbu 1968 15
Ngima Nuru (Nima Nuru) Sherpa Tesho, Khumbu 1981 15

42

The inclusion of COUNT(*) in the output field list requires the GROUP BY
clause so that the count values can be calculated for each Sherpa. In this case,
the GROUP BY clause must specify all of the other fields in the output list. The
ORDER BY clause sorts the final result in descending order of summit counts.

Normally the ORDER BY clause can sort on table fields that are not specified in
the output field list as illustrated in the first example that sorts on “ m1.lname,
m1.fname” instead of “name”. But when a GROUP BY clause is specified as in
the second example, only field names used in the output list may be used.

A similar example for searching for all non-Sherpas that summited Everest four
times or more has some important differences due to the way that members are
designated in the Himalayan Database. For Nepali Sherpas, Tamangs, Gurungs
and Tibetans (those that are hired for expeditions) and Chinese Tibetans,
residence field is considered a part of the member’s identification and refers to
that member’s home (birth) village. For other members (usually foreign), the
residence field gives the current residence at the time of the expedition (and thus
may change from year to year) and is not a part of that member’s identification.
Thus our command is altered somewhat:

 SELECT Trim(m1.fname)+" "+m1.lname AS name,
 m1.citizen, m1.yob, COUNT(*) AS count
 FROM members m1
 WHERE 4 <=
 (SELECT COUNT(*) FROM members m2
 WHERE m1.fname=m2.fname And m1.lname=m2.lname And
 m1.yob=m2.yob And m1.sherpa=m2.sherpa And
 m1.msuccess=m2.msuccess And m1.peakid=m2.peakid And
 m2.peakid="EVER" And m2.msuccess And Not m2.sherpa)
 GROUP BY name, m1.citizen, m1.yob
 ORDER BY count DESC, name

The DESC keyword in the ORDER BY clause specifies descending order by count
(the default is ascending order).

The output produced is given below. There is one issue to note with the output
presented that regards the last two climbers, Anatoli Boukreev and Evgeni
Vinogradski. Both climbers summited Everest four times, but each one climbed
under two different citizenships as a result of the breakup of the USSR in 1992.
Hence their totals should be combined. The query produced the correct total of
four summits for each (since the “m1.citizen=m2.citizen” condition was not
included in the sub-query), but the results were listed across two lines since
“m1.citizen” was included in the output list. If “m1.citizen=m2.citizen” were
included in the sub-query, they would have been omitted from the result since
they would have been treated as four individuals, not two.

These types of issues can often occur with SQL query output since most
databases do not contain absolutely perfect data.

43

Name Citizen Yob Count
David Allen (Dave) Hahn USA 1961 15
Kenton Edward Cool UK 1973 11
Tashi Phuntsok (Tashi Phinzo) China 1983 11
Guillermo (Willie) Benegas USA 1968 10
Vernon Edward (Vern) Tejas USA 1953 10
Chayang Jangbu (Chhyang Jyalbu) Bhote Nepal 1979 9
Dean Douglas Staples New Zealand 1964 9
Gheorghe Dijmarescu USA 1961 9
Mark Wynton Woodward New Zealand 1963 9
Tashi Tsering (Small) China 1982 9
David William Hamilton UK 1961 8
Michael John (Mike) Roberts New Zealand 1961 8
Ngawang Norbu (Awang Luobo) China 1980 8
Noel Richmond Hanna UK 1967 8
Samduk Dorje (Sanduk Dorje) Tamang Nepal 1983 8
Alexander (Alex) Abramov Russia 1964 7
Charles Scott Woolums USA 1957 7
… … … …
Simone Moro Italy 1967 4
Tashi Tsering (Big) China 1979 4
Timothy John (Tim) Mosedale UK 1965 4
Tsering Dorje (Cering Dorje) China 1982 4
Victor Bobok Russia 1961 4
Wallace Wayne (Wally) Berg USA 1955 4
Yuri Contreras Cedi Mexico 1963 4
Anatoli Boukreev Kazakhstan 1958 3
Evgeni Vinogradski Russia 1946 3
Anatoli Boukreev USSR 1958 1
Evgeni Vinogradski USSR 1946 1

The following example used nested sub-queries to list all Americans that have
summited all three of the popular commercial peaks, Everest, Cho Oyu and Ama
Dablam:

 SELECT DISTINCT Trim(m1.fname)+" "+m1.lname AS name,
 m1.citizen, m1.yob
 FROM members m1
 WHERE m1.msuccess And m1.citizen="USA" And
 m1.peakid="EVER" And EXISTS
 (SELECT * FROM members m2
 WHERE m1.fname=m2.fname And m1.lname=m2.lname And
 m1.yob=m2.yob And m1.msuccess=m2.msuccess And
 m2.citizen="USA" And m2.peakid="CHOY" And
 m2.msuccess And EXISTS
 (SELECT * FROM members m3
 WHERE m2.fname=m3.fname And m2.lname=m3.lname And
 m2.yob=m3.yob And m2.msuccess=m3.msuccess And
 m3.citizen="USA" And m3.peakid="AMAD" And
 m3.msuccess))
 ORDER BY name

The output produced is

44

Name Citizen Yob

Andrew Atis (Andy) Lapkass USA 1958
Brad Allen Johnson USA 1955
Carlos Paltenghe Rockhold Buhler USA 1954
Charles Scott Woolums USA 1957
Christine Joyce Feld Boskoff USA 1967
Christopher Bernard (Chris) Warner USA 1964
Cleonice Pacheco (Cleo) Weidlich USA/Brazil 1964
Daniel Lee (Dan) Mazur USA 1960
David Charles (Dave) Morton USA 1971
Douglas Lyle (Doug) Mantle USA 1950
Eben Fleming Reckord USA 1983
Ellen Elizabeth Miller USA 1959
Emily Anne Harrington USA 1986
Eric Lane Dalzell USA 1983
Gary Scott Pfisterer USA 1952
Guillermo (Willie) Benegas USA 1968
Joby David Ogwyn USA 1974
Justin Reese Merle USA 1978
Kurt Alan Wedberg USA 1966
Patrick J. Kenny USA 1964
Peter Novak Anderson USA 1979
Peter George (Pete) Athans USA 1957
Robert Vincent (Bob) Jen USA 1953
Stuart Gregory Smith USA 1959
Tapley M. (Tap) Richards USA 1974
Wallace Wayne (Wally) Berg USA 1955

A similar example produces a list of all climbers that have summited all of the
eight 8000m peaks in Nepal:

 SELECT DISTINCT Trim(m1.fname)+" "+m1.lname AS name,
 m1.citizen, m1.yob
 FROM members m1
 WHERE m1.peakid="KANG" And m1.msuccess And 0 <
 (SELECT COUNT(*) FROM members m2
 WHERE m1.fname=m2.fname And m1.lname=m2.lname And
 m1.msuccess=m2.msuccess And m2.peakid="MAKA" And
 m2.msuccess And 0 <
 (SELECT COUNT(*) FROM members m3
 WHERE m2.fname=m3.fname And m2.lname=m3.lname And
 m2.msuccess=m3.msuccess And m3.peakid="EVER" And
 m3.msuccess And 0 <
 (SELECT COUNT(*) FROM members m4
 WHERE m3.fname=m4.fname And m3.lname=m4.lname And
 m3.msuccess=m4.msuccess And m4.peakid="LHOT" And
 m4.msuccess And 0 <
 (SELECT COUNT(*) FROM members m5
 WHERE m4.fname=m5.fname And m4.lname=m5.lname And
 m4.msuccess=m5.msuccess And m5.peakid="CHOY" And
 m5.msuccess And 0 <

45

 (SELECT COUNT(*) FROM members m6
 WHERE m5.fname=m6.fname And m5.lname=m6.lname And
 m5.msuccess=m6.msuccess And m6.peakid="MANA" And
 m6.msuccess And 0 <
 (SELECT COUNT(*) FROM members m7
 WHERE m6.fname=m7.fname And m6.lname=m7.lname And
 m6.msuccess=m7.msuccess And m7.peakid="ANN1" And
 m7.msuccess And 0 <
 (SELECT COUNT(*) FROM members m8
 WHERE m7.fname=m8.fname And m7.lname=m8.lname And
 m7.msuccess=m8.msuccess And m8.peakid="DHA1" And
 m8.msuccess)))))))
 ORDER BY name

The output produced is

Name Citizen Yob
Abele Blanc Italy 1954
Alberto Inurrategi Iriarte Spain 1968
Andrew James Lock Australia 1961
Carlos Miguel Carsolio Larrea Mexico 1962
Chang-Ho Kim S Korea 1969
Chhang Dawa Sherpa Nepal 1982
Chun-Feng Yang China 1968
Denis V. Urubko Kazakhstan 1973
Denis V. Urubko Russia/Kazakhstan 1973
Edmund Karl (Ed) Viesturs USA 1959
Edurne Pasaban Lizarribar Spain 1973
Eero Viekka Juhani Gustafsson Finland 1968
Erhard Loretan Switzerland 1959
… … …
Radek Jaros Czech Republic 1964
Ralf Dujmovits Germany 1961
Reinhold Messner Italy 1944
Ren Na China 1966
Samuli (Mika) Mansikka Finland 1978
Serap Jangbu Sherpa Nepal 1969
Sergio Martini Italy 1949
Silvio Mondinelli Italy 1958
Sung-Ho Seo S Korea 1979
Tshering Dorje (Cerin Duoji) China 1960
Vassily T. Pivtsov Russia 1975
Vladislav Terzyul Ukraine 1953
Wang-Yong Han S Korea 1966
Young-Seok Park S Korea 1963

Three comments should be made about this example. First, in order to
abbreviate the length of SELECT command, the comparisons “m1.yob=m2.yob,
etc.” are excluded which assumes that there are no conflicts in the database with
climbers of the same name that summited 8000m peaks.

Second, the phrase “0 < (SELECT COUNT(*) FROM …” is used in place of
“EXISTS (SELECT * FROM …”. The two phrases are logically equivalent, but

46

due to limitations of SQL processing in VFP-9, only seven levels of the EXISTS
form are allowed, whereas eight levels of the first form are permissible. When
possible, the EXISTS form is preferred since it executes the query more
efficiently.

Third, Denis V. Urubko appears twice since he changed his citizenship from
Kazakhstan to Russian. This duplication could be eliminated if we had included
the citizenship the comparisons “m1.citizen=m2.citizen, etc.”, but would have
made the SELECT statements much more cumbersome.

An earlier VFP-6 example using a sub-query to search for climbers that have
summited Everest from both sides

 SELECT DISTINCT Trim(m1.fname)+" "+m1.lname AS name,
 m1.citizen, m1.yob
 FROM exped x, members m1
 WHERE x.expid=m1.expid And m1.peakid="EVER" And
 x.host=1 And m1.msuccess And EXISTS
 (SELECT * FROM exped x, members m2
 WHERE x.expid=m2.expid And m1.fname=m2.fname And
 m1.lname=m2.lname And m1.yob=m2.yob And
 m2.peakid="EVER" And x.host=2 And m2.msuccess)
 ORDER BY name

could be rewritten in VFP-9 using the JOIN-ON clause as

 SELECT DISTINCT Trim(m1.fname)+" "+m1.lname AS name,
 m1.citizen, m1.yob
 FROM exped x JOIN members m1 ON x.expid=m1.expid
 WHERE m1.peakid="EVER" And x.host=1 And
 m1.msuccess And EXISTS
 (SELECT *
 FROM exped x JOIN members m2 ON x.expid=m2.expid
 WHERE m1.fname=m2.fname And m1.lname=m2.lname And
 m1.yob=m2.yob And m2.peakid="EVER" And
 x.host=2 And m2.msuccess)
 ORDER BY name

47

Additional Examples for Visual Foxpro 6 and 9

The following example selects members who have summited Everest and Lhotse
in the same season. The output is ordered by age. The residence check is needed
to distinguish Sherpas with the same name and age, but from different villages.

 SELECT Trim(m1.fname)+" "+m1.lname AS name,
 m1.citizen, m1.residence, m1.calcage AS Age,
 m1.msmtdate1 AS Everest,m2.msmtdate1 AS Lhotse
 FROM members m1, members m2
 WHERE m1.myear=m2.myear And m1.mseason=m2.mseason
 And m1.peakid="EVER" And m2.peakid="LHOT"
 And m1.msuccess And m2.msuccess
 And m1.fname=m2.fname And m1.lname=m2.lname
 And m1.yob=m2.yob And m1.residence=m2.residence
 ORDER BY m1.calcage

The TOP clause can be used to extract the first n rows or n percentage of rows
from the query result

 SELECT TOP n [PERCENT] field-list FROM table-list WHERE condition
 ORDER BY order-list

The use of the TOP clause requires the inclusion of the ORDER BY clause in the
SELECT statement. Thus to get the ten youngest to summit both Everest and
Lhotse in the same season, specify

 SELECT TOP 10 Trim(m1.fname)+" "+m1.lname AS name,
 m1.citizen,m1.residence, m1.calcage AS Age,
 m1.msmtdate1 AS Everest, m2.msmtdate1 AS Lhotse
 FROM members m1, members m2
 WHERE m1.myear=m2.myear And m1.mseason=m2.mseason
 And m1.peakid="EVER" And m2.peakid="LHOT"
 And m1.msuccess And m2.msuccess
 And m1.fname=m2.fname And m1.lname=m2.lname
 And m1.yob=m2.yob And m1.residence=m2.residence
 ORDER BY m1.calcage

Name Citizen Residence Age Everest Lhotse
Mingma Tenzi Sherpa Nepal Yaphu-9, Makalu-Barun 22 16/05/2007 04/05/007
Phura Chhetan Sherpa Nepal Phortse, Khumbu 22 23/05/2013 17/05/2013
Edwin Spottswood Bailey USA Boulder, Colorado 22 18/05/2013 19/05/2013
Dawa Steven Sherpa Nepal Kathmandu 24 26/05/2008 21/05/2008
Norbu (Nuru) Sherpa Nepal Beding, Dolakha 25 09/10/1993 04/10/1993
Lhakpa Wangchu Sherpa Nepal Pangboche, Khumbu 25 19/05/2012 26/05/2012
Gyalzen Dorje Sherpa Nepal Phortse, Khumbu 25 10/05/2013 17/05/2013
Pasang Rinji Sherpa Nepal Kharikhola, Solukhumbu 26 22/05/2003 13/05/2003
Nima Gyalzen Sherpa Nepal Beding, Dolakha 26 18/05/2012 25/05/2012
Lhakpa Wangchu Sherpa Nepal Pangboche, Khumbu 26 13/05/2013 23/05/2013

48

To select climbers who summited Everest and Lhotse in the same season
without oxygen, we would just add the phrase “And m1.mo2none And
m2.mo2none” to the WHERE clause.

To select climbers who summited Lhotse the day after summiting Everest (an
example of using calculations in the WHERE clause):

 SELECT Trim(m1.fname)+" "+Trim(m1.lname) AS name, m1.citizen,
 m1.residence, m1.calcage AS age,
 m1.msmtdate1 AS Everest, m2.msmtdate1 AS Lhotse
 FROM members m1, members m2
 WHERE m1.myear=m2.myear And m1.mseason=m2.mseason
 And m1.peakid="EVER" And m2.peakid="LHOT"
 And m1.msuccess And m2.msuccess
 And m1.fname=m2.fname And m1.lname=m2.lname
 And m1.yob=m2.yob And m1.residence=m2.residence
 And m2.msmtdate1-m1.msmtdate1<=1
 And m2.msmtdate1>m1.msmtdate1
 ORDER BY m1.msmtdate1

Name Citizen Residence Age Everest Lhotse
James Michael Horst USA Seattle, Washington 32 14/05/2011 15/05/2011
Thomas Halliday USA Chicago, Illinois 49 19/05/2011 20/05/2011
Garrett Christian Madison USA Bainbridge Island, Was... 32 19/05/2011 20/05/2011
Kristoffer Jon Erickson USA Livingston, Montana 38 25/05/2012 26/05/2012
Hilaree Janet O'Neill USA Telluride, Colorado 39 25/05/2012 26/05/2012
Michael Joseph Moniz USA Boulder, Colorado 50 26/05/2012 27/05/2012
Edwin Spottswood Bailey Nepal Boulder, Colorado 22 18/05/2013 19/05/2013
… … … … … …

To select all 7000m peaks that were summited by S Koreans:

 SELECT DISTINCT m.peakid, p.pkname, m.citizen
 FROM members m, peaks p
 WHERE m.peakid=p.peakid And
 Between(p.heightm,7000,7999) And
 m.citizen="S Korea"
 ORDER BY m.peakid

Peakid Pkname Citizen
ANN2 Annapurna II S Korea
ANN3 Annapurna III S Korea
ANN4 Annapurna IV S Korea
ANNS Annapurna South S Korea
APIM Api Main S Korea
BARU Baruntse S Korea
CHAM Chamlang S Korea
CHRE Churen Himal East S Korea
CHRW Churen Himal West S Korea
CHUR Churen Himal Central S Korea
DHA6 Dhaulagiri VI S Korea
… …

49

To select all Australians that summited one or more Nepali main 8000ers:

 SELECT Trim(m.lname)+", "+Trim(m.fname) AS name,
 m.citizen, m.calcage AS age, m.sex, m.peakid AS peak,
 m.msmtdate1 AS smt_dt
 FROM members m
 WHERE Inlist(m.peakid,"KANG","MAKA","LHOT","EVER","CHOY",
 "MANA","ANN1","DHA1")
 And m.msuccess And Upper(m.citizen)="AUSTRALIA"
 ORDER BY name, m.msmtdate1

The output produced will contain one line for each 8000er summited by each
Australian. To limit the selection to all Australians that summited multiple
Nepali main 8000ers:

 SELECT DISTINCT Trim(m1.lname)+", "+Trim(m1.fname) AS name,
 m1.citizen, m1.calcage AS age,
 m1.sex, m1.peakid AS peak,
 m1.msmtdate1 AS smt_dt
 FROM members m1, members m2
 WHERE Inlist(m1.peakid,"KANG","MAKA","LHOT","EVER","CHOY",
 "MANA","ANN1","DHA1")
 And Inlist(m2.peakid,"KANG","MAKA","LHOT","EVER","CHOY",
 "MANA","ANN1","DHA1")
 And m1.peakid<>m2.peakid
 And m1.msuccess And m2.msuccess
 And m1.fname=m2.fname And m1.lname=m2.lname
 And m1.yob=m2.yob
 And Upper(m1.citizen)="AUSTRALIA"
 ORDER BY name, m1.msmtdate1

The DISTINCT keyword is required to prevent redundant entries in the output.

Name Citizen Age Sex Peak Smt_dt
Baldry, Anthony Donald Australia 40 M CHOY 27/09/2003
Baldry, Anthony Donald Australia 41 M EVER 27/05/2004
Baldry, Anthony Donald Australia 49 M MANA 11/05/2012
Baldry, Anthony Donald Australia 50 M LHOT 22/05/2013
Bart, Cheryl Sarah Australia 48 F CHOY 02/10/2007
Bart, Cheryl Sarah Australia 49 F EVER 24/05/2008
Bart, Nicole Karina (Nikki) Australia 22 F CHOY 02/10/2007
Bart, Nicole Karina (Nikki) Australia 23 F EVER 24/05/2008
Buck, Piers McAuley Australia 29 M CHOY 27/09/2003
Buck, Piers McAuley Australia 30 M CHOY 05/06/2005
… … … … … …

Care must be used when using the ORDER BY clause when the DISTINCT
keyword is present. When specifying compound items in the ORDER BY clause,
we recommend using the AS-version of the item. In Visual FoxPro 9, the
DISTINCT keyword may cause errors if the compound items are used directly.

50

In the first example without the DISTINCT keyword, the ORDER BY clause
could be given in either Visual FoxPro 6 or 9 as any of

 ORDER BY name, m.msmtdate1
 ORDER BY name, smt_dt
 ORDER BY m.lname, m.fname, m.msmtdate1
 ORDER BY m.lname, m.fname, smt_dt

But with the DISTINCT keyword, in Visual FoxPro 9 only the following are
allowed

 ORDER BY name, m.msmtdate1
 ORDER BY name, smt_dt

This restriction is likely due to a SQL implementation error in Visual FoxPro 9.

To select women that summited multiple Nepali main 8000ers in the same
season:

 SELECT DISTINCT Trim(m1.lname)+", "+Trim(m1.fname) AS name,
 m1.citizen, m1.calcage AS Age,
 m1.peakid AS peak1, m1.msmtdate1 AS peak1_dt,
 m2.peakid AS peak2, m2.msmtdate1 AS peak2_dt
 FROM members m1, members m2
 WHERE m1.myear=m2.myear And m1.mseason=m2.mseason
 And Inlist(m1.peakid,"KANG","MAKA","LHOT","EVER","CHOY",
 "MANA","ANN1","DHA1")
 And Inlist(m2.peakid,"KANG","MAKA","LHOT","EVER","CHOY",
 "MANA","ANN1","DHA1")
 And m1.peakid<>m2.peakid
 And m1.msuccess And m2.msuccess
 And m1.fname=m2.fname And m1.lname=m2.lname
 And m1.yob=m2.yob And m1.sex="F"
 And m1.residence=m2.residence
 And m1.msmtdate1>m2.msmtdate1
 ORDER BY m1.msmtdate1, name

Name Citizen Age Peak1 Peak1_dt Peak2 Peak2_dt
Rutkiewicz, Wanda Poland 48 ANN1 22/10/1991 CHOY 26/09/1991
Mauduit, Chantal France 32 MANA 24/05/1996 LHOT 10/05/1996
Oh, Eun-Sun S Korea 42 LHOT 26/05/2008 MAKA 13/05/2008
Go, Mi-Sun S Korea 41 KANG 18/05/2009 MAKA 01/05/2009
Oh, Eun-Sun S Korea 42 DHA1 21/05/2009 KANG 06/05/2009
Denis, Sophie France 32 LHOT 19/05/2011 CHOY 05/05/2011
Kazemi, Parvaneh Iran 41 LHOT 25/05/2012 EVER 18/05/2012
O'Neill, Hilaree Janet USA 39 LHOT 26/05/2012 EVER 25/05/2012
Weidlich, Cleonice Pacheco… USA/Brazil 48 DHA1 26/05/2012 ANN1 20/04/2012
Gayen, Chhanda India 33 LHOT 20/05/2013 EVER 18/05/2013
Luo, Jing China 40 EVER 15/05/2016 ANN1 01/05/2016

51

To select members that summited Everest twice within 7 days (another example
of using a calculation in the WHERE clause):

 SELECT Trim(m.lname)+", "+Trim(m.fname) AS name,
 m.citizen, m.residence, m.calcage AS age,
 m.msmtdate1 AS smt_dt1,
 m.msmtdate2 AS smt_dt2
 FROM members m
 WHERE m.peakid="EVER"
 And m.msuccess
 And m.msmtdate2-m.msmtdate1 <= 7
 And Not Empty(m.msmtdate2)
 ORDER BY smt_dt1

Name Citizen Residence Age Smt_dt1 Smt_dt2
Rhoads, Jeffery E. (Jeff) USA Pocatello, Idaho 43 20/05/1998 27/05/1998
Sherpa, Tashi Tshering Nepal Pangboche, Khumbu 28 20/05/1998 27/05/1998
Sherpa, Pasang Dawa… Nepal Pangboche, Khumbu 29 18/05/2006 25/05/2006
Sherpa, Lhakpa Thundu… Nepal Pangboche, Khumbu 35 18/05/2006 25/05/2006
Sherpa, Dawa Nuru Nepal Phortse, Khumbu 27 20/05/2006 23/05/2006
Sherpa, Pemba Dorje Nepal Beding, Dolakha 30 08/05/2007 15/05/2007
Cool, Kenton Edward UK Chamonix, Haute… 33 17/05/2007 24/05/2007
Casserley, Robert Hargr… UK Bath, Avon, England 31 17/05/2007 24/05/2007
Sherpa, Pasang Dawa… Nepal Pangboche, Khumbu 30 17/05/2007 24/05/2007
Sherpa, Pasang Rita… Nepal Yilajung, Khumbu 36 07/05/2011 13/05/2011
… … … … …

To get members that summited Everest twice within the same season, increase
the count from 7 to 60 or more.

52

Two UNION examples (for Visual FoxPro 9 only):

Example 1:

To select non-Sherpas that summited Everest 10 or more times and non-Sherpas
that summited 16 or more times:

 SELECT Trim(m1.fname)+" "+m1.lname AS name, " " AS residence,
 m1.citizen, m1.yob, COUNT(*) AS count
 FROM members m1
 WHERE 10 <=
 (SELECT COUNT(*) FROM members m2
 WHERE m1.fname=m2.fname And m1.lname=m2.lname And
 m1.citizen=m2.citizen And m1.yob=m2.yob And
 m1.msuccess=m2.msuccess And
 m1.peakid=m2.peakid And m2.peakid="EVER" And
 Not m2.sherpa And m2.msuccess)
 GROUP BY name, m1.citizen, m1.yob

 UNION

 SELECT Trim(m1.fname)+" "+m1.lname AS name, m1.residence AS
 residence, m1.citizen, m1.yob, COUNT(*) AS count
 FROM members m1
 WHERE 16 <=
 (SELECT COUNT(*) FROM members m2
 WHERE m1.fname=m2.fname And m1.lname=m2.lname And
 m1.residence=m2.residence And m1.yob=m2.yob And
 m1.msuccess=m2.msuccess And
 m1.peakid=m2.peakid And m2.peakid="EVER" And
 m2.sherpa And m2.msuccess)
 GROUP BY name, residence, m1.citizen, m1.yob

 ORDER BY count DESC, name

Note the different uses of “citizen” and “residence” in each of the two parts of the
UNION clause due to the fact the residence is an integral part of a Sherpa’s
identity in the Himalayan Database. The use of residence is necessary to prevent
the combination of counts from Sherpas with the same name and YOB (unlikely,
but still possible).

53

Example 2:

Select all climbers that have summited Everest and Cho Oyu six or more times
each:

SELECT Trim(m1.fname)+" "+m1.lname AS name, m1.citizen,
 m1.yob, COUNT(*) AS evercnt
 FROM members m1
 WHERE 6 <=
 (SELECT COUNT(*) FROM members m2
 WHERE m1.fname=m2.fname And m1.lname=m2.lname And
 m1.citizen=m2.citizen And m1.yob=m2.yob And
 m1.msuccess=m2.msuccess And
 m1.peakid=m2.peakid And m2.peakid="EVER" And
 m2.msuccess And 6 <=
 (SELECT COUNT(*) FROM members m3
 WHERE m2.fname=m3.fname And m2.lname=m3.lname And
 m2.citizen=m3.citizen And m2.yob=m3.yob And
 m2.msuccess=m3.msuccess And
 m3.peakid="CHOY" And m3.msuccess))
 GROUP BY name, m1.citizen, m1.yob
 ORDER BY evercnt DESC, name

The output produced is

Name Citizen Yob Evercnt
Kami Rita (Topke) Sherpa Nepal 1970 18
Lhakpa Rita Sherpa Nepal 1966 16
Tshering Dorje Sherpa Nepal 1970 16
Dawa Nuru (Danuru) Sherpa Nepal 1978 14
Kami Tshering (Ang Chhiring) Sherpa Nepal 1962 12
Chhiring Dorje Sherpa Nepal 1974 11
Norbu/Nurbu (Nuru) Sherpa Nepal 1968 10
Jangbu Sherpa Nepal 1967 9
Karsang Namgyal/Namgel Sherpa Nepal 1971 9
Mingma Tenzing Sherpa Nepal 1986 7
Tamtin (Thomting, Tamding) Sherpa Nepal 1974 7
Lobsang Temba (Lupsang Temba) Sherpa Nepal 1968 6
Michael Aaron Hamill USA 1977 6

The limitation of the above example is that it only gives the summit count for
Everest and not for Cho Oyu. In order to get both summit counts, the following
can be used.

54

 SELECT Trim(m1.fname)+" "+m1.lname AS name, m1.citizen,
 m1.yob, COUNT(*) AS evercnt, 0 AS choycnt
 FROM members m1
 WHERE 6 <=
 (SELECT COUNT(*) FROM members m2
 WHERE m1.fname=m2.fname And m1.lname=m2.lname And
 m1.citizen=m2.citizen And m1.yob=m2.yob And
 m1.msuccess=m2.msuccess And
 m1.peakid=m2.peakid And m2.peakid="EVER" And
 m2.msuccess And 6 <=
 (SELECT COUNT(*) FROM members m3
 WHERE m2.fname=m3.fname And m2.lname=m3.lname And
 m2.citizen=m3.citizen And m2.yob=m3.yob And
 m2.msuccess=m3.msuccess And
 m3.peakid="CHOY" And m3.msuccess))
 GROUP BY name, m1.citizen, m1.yob

 UNION

 SELECT Trim(m1.fname)+" "+m1.lname AS name, m1.citizen,
 m1.yob, 0 AS evercnt, COUNT(*) AS choycnt
 FROM members m1
 WHERE 6 <=
 (SELECT COUNT(*) FROM members m2
 WHERE m1.fname=m2.fname And m1.lname=m2.lname And
 m1.citizen=m2.citizen And m1.yob=m2.yob And
 m1.msuccess=m2.msuccess And
 m1.peakid=m2.peakid And m2.peakid="CHOY" And
 m2.msuccess And 6 <=
 (SELECT COUNT(*) FROM members m3
 WHERE m2.fname=m3.fname And m2.lname=m3.lname And
 m2.citizen=m3.citizen And m2.yob=m3.yob And
 m2.msuccess=m3.msuccess And
 m3.peakid="EVER" And m3.msuccess))
 GROUP BY name, m1.citizen, m1.yob

 INTO TABLE everchoy
 ORDER BY name, yob

55

The output produced into the table “Everchoy” is

Name Citizen Yob Evercnt Choycnt
Chhiring Dorje Sherpa Nepal 1974 0 7
Chhiring Dorje Sherpa Nepal 1974 11 0
Dawa Nuru (Danuru) Sherpa Nepal 1978 0 9
Dawa Nuru (Danuru) Sherpa Nepal 1978 14 0
Jangbu Sherpa Nepal 1967 0 6
Jangbu Sherpa Nepal 1967 9 0
Kami Rita (Topke) Sherpa Nepal 1970 0 8
Kami Rita (Topke) Sherpa Nepal 1970 18 0
Kami Tshering (Ang Chhiring) Sherpa Nepal 1962 0 7
Kami Tshering (Ang Chhiring) Sherpa Nepal 1962 12 0
Karsang Namgyal/Namgel Sherpa Nepal 1971 0 6
Karsang Namgyal/Namgel Sherpa Nepal 1971 9 0
… … … … …

which gives two entries for each climber. The following subsequent query on the
table “everchoy”

 SELECT name, citizen, yob, Sum(evercnt) AS everest,
 Sum(choycnt) AS choy_oyu
 FROM everchoy
 GROUP BY name, citizen, yob
 ORDER BY everest DESC, name

merges the two entries for each climber and produces the final output

Name Citizen Yob Everest Choy_oyu
Kami Rita (Topke) Sherpa Nepal 1970 18 8
Lhakpa Rita Sherpa Nepal 1966 16 10
Tshering Dorje Sherpa Nepal 1970 16 6
Dawa Nuru (Danuru) Sherpa Nepal 1978 14 9
Kami Tshering (Ang Chhiring) Sherpa Nepal 1962 12 7
Chhiring Dorje Sherpa Nepal 1974 11 7
Norbu/Nurbu (Nuru) Sherpa Nepal 1968 10 6
Jangbu Sherpa Nepal 1967 9 6
Karsang Namgyal/Namgel Sherpa Nepal 1971 9 6
Mingma Tenzing Sherpa Nepal 1986 7 6
Tamtin (Thomting, Tamding) Sherpa Nepal 1974 7 6
Lobsang Temba (Lupsang Temba) Sherpa Nepal 1968 6 6
Michael Aaron Hamill USA 1977 6 8

The Example 2 statements are not valid in Visual FoxPro 6 due to sub-query
nesting restrictions.

